55 research outputs found

    A Brain-Machine Interface for Control of Medically-Induced Coma

    Get PDF
    Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually monitoring the patient's brain activity with an electroencephalogram (EEG) and manually titrating the anesthetic infusion rate to maintain a specified level of burst suppression, an EEG marker of profound brain inactivation in which bursts of electrical activity alternate with periods of quiescence or suppression. The medical coma is often required for several days. A more rational approach would be to implement a brain-machine interface (BMI) that monitors the EEG and adjusts the anesthetic infusion rate in real time to maintain the specified target level of burst suppression. We used a stochastic control framework to develop a BMI to control medically-induced coma in a rodent model. The BMI controlled an EEG-guided closed-loop infusion of the anesthetic propofol to maintain precisely specified dynamic target levels of burst suppression. We used as the control signal the burst suppression probability (BSP), the brain's instantaneous probability of being in the suppressed state. We characterized the EEG response to propofol using a two-dimensional linear compartment model and estimated the model parameters specific to each animal prior to initiating control. We derived a recursive Bayesian binary filter algorithm to compute the BSP from the EEG and controllers using a linear-quadratic-regulator and a model-predictive control strategy. Both controllers used the estimated BSP as feedback. The BMI accurately controlled burst suppression in individual rodents across dynamic target trajectories, and enabled prompt transitions between target levels while avoiding both undershoot and overshoot. The median performance error for the BMI was 3.6%, the median bias was -1.4% and the overall posterior probability of reliable control was 1 (95% Bayesian credibility interval of [0.87, 1.0]). A BMI can maintain reliable and accurate real-time control of medically-induced coma in a rodent model suggesting this strategy could be applied in patient care.National Institutes of Health (U.S.) (Director's Transformative Award R01 GM104948)National Institutes of Health (U.S.) (Pioneer Award DP1-OD003646)National Institutes of Health (U.S.) (NIH K08-GM094394)Massachusetts General Hospital. Dept. of Anesthesia and Critical Car

    A closed-loop anesthetic delivery system for real-time control of burst suppression

    No full text
    Objective. There is growing interest in using closed-loop anesthetic delivery (CLAD) systems to automate control of brain states (sedation, unconsciousness and antinociception) in patients receiving anesthesia care. The accuracy and reliability of these systems can be improved by using as control signals electroencephalogram (EEG) markers for which the neurophysiological links to the anesthetic-induced brain states are well established. Burst suppression, in which bursts of electrical activity alternate with periods of quiescence or suppression, is a well-known, readily discernible EEG marker of profound brain inactivation and unconsciousness. This pattern is commonly maintained when anesthetics are administered to produce a medically-induced coma for cerebral protection in patients suffering from brain injuries or to arrest brain activity in patients having uncontrollable seizures. Although the coma may be required for several hours or days, drug infusion rates are managed inefficiently by manual adjustment. Our objective is to design a CLAD system for burst suppression control to automate management of medically-induced coma. Approach. We establish a CLAD system to control burst suppression consisting of: a two-dimensional linear system model relating the anesthetic brain level to the EEG dynamics; a new control signal, the burst suppression probability (BSP) defining the instantaneous probability of suppression; the BSP filter, a state-space algorithm to estimate the BSP from EEG recordings; a proportional–integral controller; and a system identification procedure to estimate the model and controller parameters. Main results. We demonstrate reliable performance of our system in simulation studies of burst suppression control using both propofol and etomidate in rodent experiments based on Vijn and Sneyd, and in human experiments based on the Schnider pharmacokinetic model for propofol. Using propofol, we further demonstrate that our control system reliably tracks changing target levels of burst suppression in simulated human subjects across different epidemiological profiles. Significance. Our results give new insights into CLAD system design and suggest a control-theory framework to automate second-to-second control of burst suppression for management of medically-induced coma.National Institutes of Health (U.S.) (Award DP1-OD003646)National Institutes of Health (U.S.) (Award R01GM10498)Burroughs Wellcome Fund (Award 1010625

    On two-dimensional self-similar motion with azimuthal magnetic field

    No full text
    Under collaboration of Institute for Physical Problems, MoscowSIGLETIB: RN 5339 (92)+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    On two-dimensional self-similar motion with azimuthal magnetic field

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Comparison of the bounded LQR and MPC strategies with upper-bound constraints on the drug infusion rates.

    No full text
    <p>In each subfigure, the top panel shows the closed-loop controlled BSP traces using the bounded LQR control strategy and using the MPC strategy with various time horizons, time samples (seconds). The bottom panel shows the corresponding drug infusion rates. In addition to being non-negative, here the drug infusion rate is required to be less than 2.4 mg/min. Here we have shown two example permutations of the target levels but the bounded LQR and the MPC drug infusion rates converge with increasing in all cases.</p

    System identification.

    No full text
    <p>(a) and (b) show two sample fitted system responses. The measured BSP trace in response to a preliminary bolus of propofol is shown in grey and the response of the second-order system model in (2) fitted using nonlinear least-squares is shown in red.</p

    The BMI system.

    No full text
    <p>(a) The BMI records the EEG, segments the EEG into a binary time-series by filtering and thresholding, estimates the BSP or equivalently the effect-site concentration level based on the binary-time series, and then uses this estimate as feedback to control the drug infusion rate. (b) A sample burst suppression EEG trace. Top panel shows the EEG signal, middle panel shows the corresponding filtered EEG magnitude signal (orange) and the threshold (blue) used to detect the burst suppression events, and bottom panel shows the corresponding binary time-series with black indicating the suppression and white indicating the burst events. (c) The two-compartmental model used by the BMI to characterize the effect of propofol on the EEG.</p
    • …
    corecore