1,005 research outputs found

    Speed Off

    Get PDF

    The classification of normalizing groups

    Get PDF
    Let X be a finite set such that |X|=n. Let Tn and Sn denote the transformation monoid and the symmetric group on n points, respectively. Given a∈Tn∖Sn, we say that a group G⩽Sn is a-normalizing if ,where a, G and g−1ag | g ∈ G denote the subsemigroups of Tn generated by the sets {a} ∪ G and {g−1ag | g ∈ G}, respectively. If G is a-normalizing for all a ∈ Tn \ Sn, then we say that G is normalizing.The goal of this paper is to classify the normalizing groups and hence answer a question of Levi, McAlister, and McFadden. The paper ends with a number of problems for experts in groups, semigroups and matrix theory

    Optimal control of Raman pulse sequences for atom interferometry

    Get PDF
    We present the theoretical design and experimental implementation of mirror and beamsplitter pulses that improve the fidelity of atom interferometry and increase its tolerance of systematic inhomogeneities. These pulses are designed using the GRAPE optimal control algorithm and demonstrated experimentally with a cold thermal sample of 85Rb atoms. We first show a stimulated Raman inversion pulse design that achieves a ground hyperfine state transfer efficiency of 99.8(3)%, compared with a conventional π pulse efficiency of 75(3)%. This inversion pulse is robust to variations in laser intensity and detuning, maintaining a transfer efficiency of 90% at detunings for which the π pulse fidelity is below 20%, and is thus suitable for large momentum transfer interferometers using thermal atoms or operating in non-ideal environments. We then extend our optimization to all components of a Mach-Zehnder atom interferometer sequence and show that with a highly inhomogeneous atomic sample the fringe visibility is increased threefold over that using conventional π and π/2 pulses

    Post-Pancreatoduodenectomy Outcomes and Epidural Analgesia: A 5-Year Single Institution Experience

    Get PDF
    Introduction Optimal pain control post-pancreatoduodenectomy is a challenge. Epidural analgesia (EDA) is increasingly utilized despite inherent risks and unclear effects on outcomes. Methods All pancreatoduodenectomies (PD) performed from 1/2013-12/2017 were included. Clinical parameters were obtained from retrospective review of a prospective clinical database, the ACS NSQIP prospective institutional database and medical record review. Chi-Square/Fisher’s Exact and Independent-Samples t-Tests were used for univariable analyses; multivariable regression (MVR) was performed. Results 671 consecutive PD from a single institution were included (429 EDA, 242 non-EDA). On univariable analysis, EDA patients experienced significantly less wound disruption (0.2% vs. 2.1%), unplanned intubation (3.0% vs. 7.9%), pulmonary embolism (0.5% vs. 2.5%), mechanical-ventilation >48hrs (2.1% vs. 7.9%), septic shock (2.6% vs. 5.8%), and lower pain scores. On MVR accounting for baseline group differences (gender, hypertension, pre-operative transfusion, labs, approach, pancreatic duct size), EDA was associated with less superficial wound infections (OR 0.34; CI 0.14-0.83; P=0.017), unplanned intubations (OR 0.36; CI 0.14-0.88; P=0.024), mechanical ventilation >48 hrs (OR 0.22; CI 0.08-0.62; P=0.004), and septic shock (OR 0.39; CI 0.15-1.00; P=0.050). EDA improved pain scores post-PD days 1-3 (P<0.001). No differences were seen in cardiac or renal complications; pancreatic fistula (B+C) or delayed gastric emptying; 30/90-day mortality; length of stay, readmission, discharge destination, or unplanned reoperation. Conclusion Based on the largest single institution series published to date, our data support the use of EDA for optimization of pain control. More importantly, our data document that EDA significantly improved infectious and pulmonary complications

    Clinical and morphological findings on mustard gas [bis (2-chloroethyl) sulfide] poisoning

    Get PDF
    n 1984 and 1985, a total of eleven Iranian patients were transferred to hospitals in Munich, Germany, after a reported gas attack in the Iran-Iraq war. The initial symptoms and pretreatment in Teheran, Iran, as well as the admittance examination data, the clinical courses of the patients, and the clinical laboratory data in Germany, are reported. The main injuries were to the skin, the eyes, and the respiratory tract. One patient stopped breathing suddenly on the third day of treatment (eight days after the exposure). A large piece of mucous membrane blocking a bronchus was removed during an immediate bronchoscopy, but attempts at resuscitation failed. The most important autopsy findings in this case were severe pseudomembranous inflammation of the trachea and the bronchial tubes. The histological findings are reported. Chemical proof of the poison (mustard gas) was established. A review of the history of chemical warfare, the physical and chemical properties of mustard gas, and a literature survey of clinical findings (including, especially, experiences from World Wars I and II) contribute to the understanding of the actual cases

    Evidence for treatment with estradiol for women with SARS-CoV-2 infection

    Get PDF
    Background: Given that an individual's age and gender are strongly predictive of coronavirus disease 2019 (COVID-19) outcomes, do such factors imply anything about preferable therapeutic options? Methods: An analysis of electronic health records for a large (68,466-case), international COVID-19 cohort, in 5-year age strata, revealed age-dependent sex differences. In particular, we surveyed the effects of systemic hormone administration in women. The primary outcome for estradiol therapy was death. Odds ratios (ORs) and Kaplan-Meier survival curves were analyzed for 37,086 COVID-19 women in two age groups: pre- (15-49 years) and peri-/post-menopausal (> 50 years). Results: The incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is higher in women than men (by about + 15%) and, in contrast, the fatality rate is higher in men (about + 50%). Interestingly, the relationships between these quantities are linked to age: pre-adolescent girls and boys had the same risk of infection and fatality rate, while adult premenopausal women had a significantly higher risk of infection than men in the same 5-year age stratum (about 16,000 vs. 12,000 cases). This ratio changed again in peri- and postmenopausal women, with infection susceptibility converging with men. While fatality rates increased continuously with age for both sexes, at 50 years, there was a steeper increase for men. Thus far, these types of intricacies have been largely neglected. Because the hormone 17ß-estradiol influences expression of the human angiotensin-converting enzyme 2 (ACE2) protein, which plays a role in SARS-CoV-2 cellular entry, propensity score matching was performed for the women's sub-cohort, comparing users vs. non-users of estradiol. This retrospective study of hormone therapy in female COVID-19 patients shows that the fatality risk for women > 50 years receiving estradiol therapy (user group) is reduced by more than 50%; the OR was 0.33, 95% CI [0.18, 0.62] and the hazard ratio (HR) was 0.29, 95% CI [0.11,0.76]. For younger, pre-menopausal women (15-49 years), the risk of COVID-19 fatality is the same irrespective of estradiol treatment, probably because of higher endogenous estradiol levels. Conclusions: As of this writing, still no effective drug treatment is available for COVID-19; since estradiol shows such a strong improvement regarding fatality in COVID-19, we suggest prospective studies on the potentially more broadly protective roles of this naturally occurring hormone

    Column Density, Kinematics, and Thermal State of Metal-bearing Gas within the Virial Radius of z ∼ 2 Star-forming Galaxies in the Keck Baryonic Structure Survey

    Get PDF
    We present results from the Keck Baryonic Structure Survey (KBSS) including the first detailed measurements of the column densities, kinematics, and internal energy of metal-bearing gas within the virial radius (35–100 physical kpc) of eight ~L* galaxies at z ~ 2. From our full sample of 130 metal-bearing absorbers, we infer that halo gas is kinematically complex when viewed in singly, doubly, and triply ionized species. Broad O vi and C iv absorbers are detected at velocities similar to the lower-ionization gas but with a very different kinematic structure, indicating that the circumgalactic medium (CGM) is multiphase. There is a high covering fraction of metal-bearing gas within 100 kpc, including highly ionized gas such as O vi; however, observations of a single galaxy probed by a lensed background QSO suggest the size of metal-bearing clouds is small (<400 pc for all but the O vi-bearing gas). The mass in metals found within the halo is substantial, equivalent to ≳25% of the metal mass within the interstellar medium. The gas kinematics unambiguously show that 70% of galaxies with detected metal absorption have some unbound metal-enriched gas, suggesting galactic winds may commonly eject gas from halos at z ~ 2. When modeled assuming that ions with different ionization potentials can originate within a single gaseous structure, significant thermal broadening is detected in CGM absorbers that dominates the internal energy of the gas. Some 40% of the detected gas has temperatures in the range 10^(4.5-5.5) K where cooling times are short, suggesting the CGM is dynamic, with constant heating or cooling to produce this short-lived thermal phase

    Indentation Plastometry of Welds

    Get PDF
    This investigation concerns the application of the profilometry-based indentation plastometry (PIP) methodology to obtain stress–strain relationships for material in the vicinity of fusion welds. These are produced by The Welding Institute (TWI), using submerged arc welding to join pairs of thick steel plates. The width of the welds varies from about 5 mm at the bottom to about 40–50 mm at the top. For one weld, the properties of parent and weld metal are similar, while for the other, the weld metal is significantly harder than the parent. Both weldments are shown to be approximately isotropic in terms of mechanical response, while there is a small degree of anisotropy in the parent metal (with the through-thickness direction being slightly softer than the in-plane directions). The PIP procedure has a high sensitivity for detecting such anisotropy. It is also shown that there is excellent agreement between stress–strain curves obtained using PIP and via conventional uniaxial testing (tensile and compressive). Finally, the PIP methodology is used to explore properties in the transition regime between weld and parent, with a lateral resolution of the order of 1–2 mm. This reveals variations on a scale that would be very difficult to examine using conventional testing

    Column Density, Kinematics, and Thermal State of Metal-bearing Gas within the Virial Radius of z ∼ 2 Star-forming Galaxies in the Keck Baryonic Structure Survey

    Get PDF
    We present results from the Keck Baryonic Structure Survey (KBSS) including the first detailed measurements of the column densities, kinematics, and internal energy of metal-bearing gas within the virial radius (35–100 physical kpc) of eight ~L* galaxies at z ~ 2. From our full sample of 130 metal-bearing absorbers, we infer that halo gas is kinematically complex when viewed in singly, doubly, and triply ionized species. Broad O vi and C iv absorbers are detected at velocities similar to the lower-ionization gas but with a very different kinematic structure, indicating that the circumgalactic medium (CGM) is multiphase. There is a high covering fraction of metal-bearing gas within 100 kpc, including highly ionized gas such as O vi; however, observations of a single galaxy probed by a lensed background QSO suggest the size of metal-bearing clouds is small (<400 pc for all but the O vi-bearing gas). The mass in metals found within the halo is substantial, equivalent to ≳25% of the metal mass within the interstellar medium. The gas kinematics unambiguously show that 70% of galaxies with detected metal absorption have some unbound metal-enriched gas, suggesting galactic winds may commonly eject gas from halos at z ~ 2. When modeled assuming that ions with different ionization potentials can originate within a single gaseous structure, significant thermal broadening is detected in CGM absorbers that dominates the internal energy of the gas. Some 40% of the detected gas has temperatures in the range 10^(4.5-5.5) K where cooling times are short, suggesting the CGM is dynamic, with constant heating or cooling to produce this short-lived thermal phase
    • …
    corecore