282 research outputs found

    Half-metallic ferromagnets for magnetic tunnel junctions

    Get PDF
    Using theoretical arguments, we show that, in order to exploit half-metallic ferromagnets in tunneling magnetoresistance (TMR) junctions, it is crucial to eliminate interface states at the Fermi level within the half-metallic gap; contrary to this, no such problem arises in giant magnetoresistance elements. Moreover, based on an a priori understanding of the electronic structure, we propose an antiferromagnetically coupled TMR element, in which interface states are eliminated, as a paradigm of materials design from first principles. Our conclusions are supported by ab-initio calculations

    Introduction to half-metallic Heusler alloys: Electronic Structure and Magnetic Properties

    Full text link
    Intermetallic Heusler alloys are amongst the most attractive half-metallic systems due to the high Curie temperatures and the structural similarity to the binary semiconductors. In this review we present an overview of the basic electronic and magnetic properties of both Heusler families: the so-called half-Heusler alloys like NiMnSb and the the full-Heusler alloys like Co2_2MnGe. \textit{Ab-initio} results suggest that both the electronic and magnetic properties in these compounds are intrinsically related to the appearance of the minority-spin gap. The total spin magnetic moment MtM_t scales linearly with the number of the valence electrons ZtZ_t, such that Mt=Zt−24M_t=Z_t-24 for the full-Heusler and Mt=Zt−18M_t=Z_t-18 for the half-Heusler alloys, thus opening the way to engineer new half-metallic alloys with the desired magnetic properties.Comment: 28 pages, submitted for a special issue of 'Journal of Physics D: Applied Physics' on Heusler alloy

    Thermal collapse of spin-polarization in half-metallic ferromagnets

    Get PDF
    The temperature dependence of the magnetization and spin-polarization at the Fermi level is investigated for half-metallic ferromagnets. We reveal a new mechanism, where the hybridization of states forming the half-metallic gap depends on thermal spin fluctuations and the polarization can drop abruptly at temperatures much lower than the Curie point. We verify this for NiMnSb by ab-initio calculations. The thermal properties are studied by mapping ab-initio results to an extended Heisenberg model which includes longitudinal fluctuations and is solved by a Monte Carlo method

    Coordination Dependence of Hyperfine Fields of 5sp Impurities on Ni Surfaces

    Full text link
    We present first-principles calculations of the magnetic hyperfine fields H of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the dependence of H on the coordination number by placing the impurity in the surfaces, on top of them at the adatom positions, and in the bulk. We find a strong coordination dependence of H, different and characteristic for each impurity. The behavior is explained in terms of the on-site s-p hybridization as the symmetry is reduced at the surface. Our results are in agreement with recent experimental findings.Comment: 4 pages, 3 figure

    First-principles calculations of exchange interactions, spin waves, and temperature dependence of magnetization in inverse-Heusler-based spin gapless semiconductors

    Get PDF
    Employing first principles electronic structure calculations in conjunction with the frozen-magnon method we calculate exchange interactions, spin-wave dispersion, and spin-wave stiffness constants in inverse-Heusler-based spin gapless semiconductor (SGS) compounds Mn2_2CoAl, Ti2_2MnAl, Cr2_2ZnSi, Ti2_2CoSi and Ti2_2VAs. We find that their magnetic behavior is similar to the half-metallic ferromagnetic full-Heusler alloys, i.e., the intersublattice exchange interactions play an essential role in the formation of the magnetic ground state and in determining the Curie temperature, TcT_\mathrm{c}. All compounds, except Ti2_2CoSi possess a ferrimagnetic ground state. Due to the finite energy gap in one spin channel, the exchange interactions decay sharply with the distance, and hence magnetism of these SGSs can be described considering only nearest and next-nearest neighbor exchange interactions. The calculated spin-wave dispersion curves are typical for ferrimagnets and ferromagnets. The spin-wave stiffness constants turn out to be larger than those of the elementary 3dd-ferromagnets. Calculated exchange parameters are used as input to determine the temperature dependence of the magnetization and TcT_\mathrm{c} of the SGSs. We find that the TcT_\mathrm{c} of all compounds is much above the room temperature. The calculated magnetization curve for Mn2_2CoAl as well as the Curie temperature are in very good agreement with available experimental data. The present study is expected to pave the way for a deeper understanding of the magnetic properties of the inverse-Heusler-based SGSs and enhance the interest in these materials for application in spintronic and magnetoelectronic devices.Comment: Accepted for publ;ication in Physical Review

    Ballistic Spin Injection from Fe into ZnSe and GaAs with a (001), (111), and (110) orientation

    Full text link
    We present first-principles calculations of ballistic spin injection in Fe/GaAs and Fe/ZnSe junctions with orientation (001), (111), and (110). We find that the symmetry mismatch of the Fe minority-spin states with the semiconductor conduction states can lead to extremely high spin polarization of the current through the (001) interface for hot and thermal injection processes. Such a symmetry mismatch does not exist for the (111) and (110) interfaces, where smaller spin injection efficiencies are found. The presence of interface states is found to lower the current spin polarization, both with and without a Schottky barrier. Finally, a higher bias can also affect the spin injection efficiency.Comment: 12 pages, 18 figure

    Tuning the Curie temperature of FeCo compounds by tetragonal distortion

    Full text link
    Combining density-functional theory calculations with a classical Monte Carlo method, we show that for B2-type FeCo compounds tetragonal distortion gives rise to a strong reduction of the Curie temperature TCT_{\mathrm{C}}. The TCT_{\mathrm{C}} monotonically decreases from 1575 K (for c/a=1c/a=1) to 940 K (for c/a=\sqrtwo). We find that the nearest neighbor Fe-Co exchange interaction is sufficient to explain the c/ac/a behavior of the TCT_{\mathrm{C}}. Combination of high magnetocrystalline anisotropy energy with a moderate TCT_{\mathrm{C}} value suggests tetragonal FeCo grown on the Rh substrate with c/a=1.24c/a=1.24 to be a promising material for heat-assisted magnetic recording applications.Comment: 4 pages, 2 figure

    Half-metallic ferromagnetism induced by dynamic electron correlations in VAs

    Get PDF
    The electronic structure of the VAs compound in the zinc-blende structure is investigated using a combined density-functional and dynamical mean-field theory approach. Contrary to predictions of a ferromagnetic semiconducting ground state obtained by density-functional calculations, dynamical correlations induce a closing of the gap and produce a half-metallic ferromagnetic state. These results emphasize the importance of dynamic correlations in materials suitable for spintronics.Comment: Published in Phys. Rev. Lett. 96, 197203 (2006

    Magnetic tunneling junctions with the Heusler compound Co_2Cr_{0.6}Fe_{0.4}Al

    Full text link
    The Heusler alloy is used as an electrode of magnetic tunneling junctions. The junctions are deposited by magnetron dc sputtering using shadow mask techniques with AlO_{x} as a barrier and cobalt as counter electrode. Measurements of the magnetoresistive differential conductivity in a temperature range between 4K and 300K are shown. An analysis of the barrier properties applying the Simmons model to the bias dependent junction conductivity is performed. VSM measurements were carried out to examine the magnetic properties of the samples.Comment: 3 pages, 3 figures submitted to JMMM (proceedings of JEMS04

    Changing the Magnetic Configurations of Nanoclusters Atom-by-Atom

    Get PDF
    The Korringa-Kohn-Rostoker Green (KKR) function method for non-collinear magnetic structures was applied on Mn and Cr ad-clusters deposited on the Ni(111) surface. By considering various dimers, trimers and tetramers, a large amount of collinear and non-collinear magnetic structures is obtained. Typically all compact clusters have very small total moments, while the more open structures exhibit sizeable total moments, which is a result of the complex frustration mechanism in these systems. Thus, as the motion of a single adatom changes the cluster structure from compact to open and vice versa, this can be considered as a magnetic switch, which via the local exchange field of the adatom allows to switch the cluster moment on and off, and which might be useful for future nanosize information storage.Comment: 7 page
    • …
    corecore