95 research outputs found

    Model simulations of the Bay of Fundy Gyre : 1. Climatological results

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C10027, doi:10.1029/2007JC004480.The characteristics of a persistent gyre in the mouth of the Bay of Fundy are studied using model simulations. A set of climatological runs are conducted to evaluate the relative importance of the different forcing mechanisms affecting the gyre. The main mechanisms are tidal rectification and density-driven circulation. Stronger circulation of the gyre occurs during the later part of the stratified season (July–August and September–October). The density-driven flow around the gyre is set up by weak tidal mixing in the deep basin in the central Bay of Fundy and strong tidal mixing on the shallow flanks around Grand Manan Island and western Nova Scotia. Spring river discharge has an important influence on near-surface circulation but only a small effect when averaged over the entire water column. Retention of particles in the gyre is controlled by the residual tidal circulation, increased frontal retention during stratified periods, wind stress, and interactions with the adjacent circulation of the Gulf of Maine. Residence times longer than 30 days are predicted for particles released in the proximity of the gyre.The preparation of this paper was supported by NSF grant OCE-0430724 and NIEHS grant 1P50-ES01274201 (Woods Hole Center for Oceans and Human Health) and NOAA grant NA06NOS4780245 (GOMTOX). Additional support was provided by NSF grant DMS-0417769

    Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity

    Get PDF
    Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aΔ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection

    Design and research on a variable ballast system for deep-sea manned submersibles

    No full text

    Assessing Fitness for Military Enlistment, Physical, Medical, and Mental Health Standards

    Get PDF
    The document of record as published may be found at https://doi.org/10.17226/11511Assessing Fitness for Military Enlistment examines the current physical, medical, and mental health standards for military enlistment in light of (1) trends in the physical condition of the youth population; (2) medical advances for treating certain conditions, as well as knowledge of the typical course of chronic conditions as young people reach adulthood; (3) the role of basic training in physical conditioning; (4) the physical demands and working conditions of various jobs in today's military services; and (5) the measures that are used by the Services to characterize an individual's physical condition. The focus is on the enlistment of 18- to 24-year-olds and their first term of service
    corecore