101 research outputs found

    Effects of Fe(III) binding to the nucleotide-independent site of F1-ATPase: enzyme thermostability and response to activating anions

    Get PDF
    AbstractMitochondrial F1-ATPase was induced in different conformations by binding of specific ligands, such as nucleotides. Then, Fourier transform infrared spectroscopy (FT-IR) and kinetic analyses were run to evaluate the structural and functional effects of Fe(III) binding to the nucleotide-independent site. Binding of one equivalent of Fe(III) induced a localised stabilising effect on the F1-ATPase structure destabilised by a high concentration of NaCl, through rearrangements of the ionic network essential for the maintenance of enzyme tertiary and/or quaternary structure. Concomitantly, a lower response of ATPase activity to activating anions was observed. Both FT-IR and kinetic data were in accordance with the hypothesis of the Fe(III) site location near one of the catalytic sites, i.e. at the α/β subunit interface

    Mitochondrial F0F1-ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone

    Get PDF
    Background & Purpose:\u2002 T1AM is a thyronamine derivative of thyroid hormone acting as a signalling molecule via non-genomic effectors and can reach intracellular targets. In light of the importance of F(0) F(1) -ATPsynthase as a target in drug development, T1AM interaction with the enzyme is demonstrated by its effects on the activity and a model of binding locations is depicted. Experimental Approach:\u2002 Kinetic analyses were performed on F(0) F(1) -ATPsynthase in sub-mitochondrial particles and soluble F(1) -ATPase. Activity assays and immunodetection of the inhibitor protein IF(1) were used and combined with molecular docking analyses. In situ respirometric analysis of T1AM effect was investigated on H9c2 cardiomyocytes. Key Results:\u2002 T1AM is a non-competitive inhibitor of F(0) F(1) -ATPsynthase whose binding is mutually exclusive with that of the inhibitors IF(1) and aurovertin B. Distinct T1AM binding sites are consistent with results from both kinetic and docking analyses: at low nanomolar concentrations, T1AM binds to a high affinity-region likely located within the IF(1) binding site, causing IF(1) release; at higher concentrations, T1AM binds to a low affinity-region likely located within the aurovertin binding cavity and inhibits enzyme activity. Low nanomolar concentrations of T1AM elicit in cardiomyocytes an increase in ADP-stimulated mitochondrial respiration indicative for an activation of F(0) F(1) -ATPsynthase consistent with displacement of endogenous IF(1, ) thereby reinforcing the in vitro results. Conclusions & Implications:\u2002 The T1AM effects upon F(0) F(1) -ATPsynthase are twofold: IF(1) displacement and enzyme inhibition. By targeting F(0) F(1) -ATPsynthase within mitochondria T1AM might affect cell bioenergetics with a positive effect on mitochondrial energy production at low endogenous concentration. T1AM putative binding locations overlapping with IF(1) and aurovertin binding sites are depicted

    Mitochondrial Adaptations in Elderly and Young Men Skeletal Muscle Following 2 Weeks of Bed Rest and Rehabilitation

    Get PDF
    The aim of the study was to evaluate the expression levels of proteins related to mitochondrial biogenesis regulation and bioenergetics in vastus lateralis muscle biopsies from 16 elderly and 7 young people subjected to 14 days of bed-rest, causing atrophy, and subsequent 14 days of exercise training. Based on quantitative immunoblot analyses, in both groups a reduction of two key regulators of mitochondrial biogenesis/remodeling and activity, namely PGC-1alpha and Sirt3, was revealed during bedrest,with a subsequent up-regulation after rehabilitation, indicating an involvement of PGC-1alpha-Sirt3 axis in response to the treatments. A difference was observed comparing the young and elderly subjects as, for both proteins, the abundance in the elderly was more affected by immobility and less responsive to exercise. The expression levels of TOM20 and Citrate Synthase, assayed as markers of outer mitochondrial membrane and mitochondrial mass, showed a noticeable sensitivity in the elderly group, where they were affected by bed-rest and rehabilitation recalling the pattern of PGC-1alpha. TOM20 and CS remained unchanged in young subjects. Single OXPHOScomplexes showed peculiar patterns, which were in some cases dissimilar from PGC 1alpha, and suggest different influences on protein biogenesis and degradation. Overall,exercise was capable to counteract the effect of immobility, when present, except for complex V, which was markedly downregulated by bed-rest, but remained unaffected after rehabilitation, maybe as result of greater extent of degradation processes over biogenesis. Phosphorylation extent of AMPK, and its upstream activator LKB1, did not change after bed-rest and rehabilitation in either young or elderly subjects, suggestingthat the activation of energy-sensing LKB1-AMPK signaling pathway was \u201cmissed\u201d due to its transient nature, or was not triggered under our conditions. Our study demonstrates that, as far as the expression of various proteins related to mitochondrial biogenesis/remodeling, adaptations to bed-rest and rehabilitation in the two populations were different. The impact of bed-rest was greater in the elderly subjects, where the pattern (decrease after bed rest and recovery following rehabilitation) was accompanied by changes of mitochondrial mass. Modifications of protein abundance were matched with data obtained from gene expression analyses of four public human datasets focusing on related genes

    Transformation by different oncogenes relies on specific metabolic adaptations

    Get PDF
    Metabolic adaptations are emerging as common traits of cancer cells and tumor progression. In vitro transformation of NIH 3T3 cells allows the analysis of the metabolic changes triggered by a single oncogene. In this work, we have compared the metabolic changes induced by H-RAS and by the nuclear resident mutant of histone deacetylase 4 (HDAC4). RAS-transformed cells exhibit a dominant aerobic glycolytic phenotype characterized by up-regulation of glycolytic enzymes, reduced oxygen consumption and a defect in complex I activity. In this model of transformation, glycolysis is strictly required for sustaining the ATP levels and the robust cellular proliferation. By contrast, in HDAC4/TM transformed cells, glycolysis is only modestly up-regulated, lactate secretion is not augmented and, instead, mitochondrial oxygen consumption is increased. Our results demonstrate that cellular transformation can be accomplished through different metabolic adaptations and HDAC4/TM cells can represent a useful model to investigate oncogene-driven metabolic changes besides the Warburg effect

    Mitochondrial Adaptations in Elderly and Young Men Skeletal Muscle Following 2 Weeks of Bed Rest and Rehabilitation

    Get PDF
    The aim of the study was to evaluate the expression levels of proteins related to mitochondrial biogenesis regulation and bioenergetics in vastus lateralis muscle biopsies from 16 elderly and 7 young people subjected to 14 days of bed-rest, causing atrophy, and subsequent 14 days of exercise training. Based on quantitative immunoblot analyses, in both groups a reduction of two key regulators of mitochondrial biogenesis/remodeling and activity, namely PGC-1α and Sirt3, was revealed during bed-rest, with a subsequent up-regulation after rehabilitation, indicating an involvement of PGC-1α-Sirt3 axis in response to the treatments. A difference was observed comparing the young and elderly subjects as, for both proteins, the abundance in the elderly was more affected by immobility and less responsive to exercise. The expression levels of TOM20 and Citrate Synthase, assayed as markers of outer mitochondrial membrane and mitochondrial mass, showed a noticeable sensitivity in the elderly group, where they were affected by bed-rest and rehabilitation recalling the pattern of PGC-1α. TOM20 and CS remained unchanged in young subjects. Single OXPHOS complexes showed peculiar patterns, which were in some cases dissimilar from PGC-1α, and suggest different influences on protein biogenesis and degradation. Overall, exercise was capable to counteract the effect of immobility, when present, except for complex V, which was markedly downregulated by bed-rest, but remained unaffected after rehabilitation, maybe as result of greater extent of degradation processes over biogenesis. Phosphorylation extent of AMPK, and its upstream activator LKB1, did not change after bed-rest and rehabilitation in either young or elderly subjects, suggesting that the activation of energy-sensing LKB1-AMPK signaling pathway was “missed” due to its transient nature, or was not triggered under our conditions. Our study demonstrates that, as far as the expression of various proteins related to mitochondrial biogenesis/remodeling, adaptations to bed-rest and rehabilitation in the two populations were different. The impact of bed-rest was greater in the elderly subjects, where the pattern (decrease after bed rest and recovery following rehabilitation) was accompanied by changes of mitochondrial mass. Modifications of protein abundance were matched with data obtained from gene expression analyses of four public human datasets focusing on related genes

    Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

    Get PDF
    Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis) or “negative” (silencing) mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1). Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation
    • …
    corecore