131 research outputs found

    Efficient continuous removal of nitrates from water with cationic cellulose nanopaper membranes

    Get PDF
    Nitrates constitute a severe problem for the quality of potable water. The removal of nitrates from water can be performed utilizing continuously operating cellulose nanopaper ion-exchangers, which so far are unfortunately of only moderate efficiency. Here we demonstrate cationic cellulose nanopapers comprising cellulose nanofibrils carrying a high amount of ammonium groups (1.6 g mmol−1, i.e. 0.62 mmol g−1), which are anticipated to enable efficient removal of nitrate ions from aqueous solutions. Thin nanopapers were shown to have high adsorption capacities. Therefore we prepared low grammage nanopapers using a papermaking process from cellulose nanofibrils prepared from paper mill sludge. The performance of these cationic nanopapers was characterized by their permeance, with these new cationic nanopapers having a permeance of more than 100 L m−2 h−1 MPa−1, which is far greater than the permeance of conventional nanopapers. Furthermore, nitrate ions were successfully removed from water by capturing them through adsorption onto the cationic nanopaper by primarily an ion-exchange mechanism. These cationic nanopapers possessed adsorption capacities of almost 300 mg g−1, which is superior to commonly used nanopaper ion-exchangers and batch-wise applied adsorbents. Utilization of an industrial side-stream in combination with very good membrane performance demonstrates the use of resource efficient technologies in an important sector

    Presentation of an Immunodominant Immediate-Early CD8+ T Cell Epitope Resists Human Cytomegalovirus Immunoevasion.

    Get PDF
    Control of human cytomegalovirus (HCMV) depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1), that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region of the HLA heavy chain. In healthy donors, HLA-C*0702-restricted T cells dominated the T cell response to IE-1. The same HLA-C allotype specifically protected infected cells from attack by NK cells that expressed a corresponding HLA-C-specific KIR. Thus, allotype-specific viral immunoevasion allows HCMV to escape control by NK cells and HLA-A- and HLA-B-restricted T cells, while the virus becomes selectively vulnerable to an immunodominant population of HLA-C-restricted T cells. Our work identifies a T cell population that may be of particular efficiency in HCMV-specific immunotherapy

    Control of Epstein-Barr virus infection in vitro by T helper cells specific for virion glycoproteins

    Get PDF
    Epstein-Barr virus (EBV) establishes lifelong persistent infections in humans by latently infecting B cells, with occasional cycles of reactivation, virus production, and reinfection. Protective immunity against EBV is mediated by T cells, but the role of EBV-specific T helper (Th) cells is still poorly defined. Here, we study the Th response to the EBV lytic cycle proteins BLLF1 (gp350/220), BALF4 (gp110), and BZLF1 and show that glycoprotein-specific Th cells recognize EBV-positive cells directly; surprisingly, a much higher percentage of target cells than those expressing lytic cycle proteins were recognized. Antigen is efficiently transferred to bystander B cells by receptor-mediated uptake of released virions, resulting in recognition of target cells incubated with <1 virion/cell. T cell recognition does not require productive infection and occurs early after virus entry before latency is established. Glycoprotein-specific Th cells are cytolytic and inhibit proliferation of lymphoblastoid cell lines (LCL) and the outgrowth of LCL after infection of primary B cells with EBV. These results establish a novel role for glycoprotein-specific Th cells in the control of EBV infection and identify virion proteins as important immune targets. These findings have implications for the treatment of diseases associated with EBV and potentially other coated viruses infecting MHC class II–positive cells

    Sulindac derivatives inhibit cell growth and induce apoptosis in primary cells from malignant peripheral nerve sheath tumors of NF1-patients

    Get PDF
    BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) are neoplasms leading to death in most cases. Patients with Neurofibromatosis type 1 have an increased risk of developing this malignancy. The metabolites of the inactive prodrug Sulindac, Sulindac Sulfide and Sulindac Sulfone (Exisulind) are new chemopreventive agents that show promising results in the treatment of different cancer types. In this study we examined the antineoplastic effect of these compounds on primary cells derived from two MPNSTs of Neurofibromatosis type 1 patients. RESULTS: Exisulind and Sulindac Sulfide showed a dramatic time- and dose-dependent growth inhibitory effect with IC50-values of 120 μM and 63 μM, respectively. The decrease in viability of the tested cells correlated with induction of apoptosis. Treatment with 500 μM Exisulind and 125 μM Sulindac Sulfide for a period of 2 days increased the rate of apoptosis 21-27-fold compared to untreated cells. Reduced expression of RAS-GTP and phosphorylated ERK1/2 was detected in treated MPNST cells. Moreover, elevated levels of phosphorylated SAPK/JNK were found after drug treatment, and low activation of cleaved caspase-3 was seen. CONCLUSIONS: Our results suggest that this class of compounds may be of therapeutic benefit for Neurofibromatosis type 1 patients with MPNST

    Immunodominance of Lytic Cycle Antigens in Epstein-Barr Virus-Specific CD4+ T Cell Preparations for Therapy

    Get PDF
    Epstein-Barr virus (EBV) is associated with a number of human malignancies. EBV-positive post-transplant lymphoproliferative disease in solid organ and hematopoietic stem cell transplant recipients has been successfully treated by the adoptive transfer of polyclonal EBV-specific T cell lines containing CD4+ and CD8+ T cell components. Although patients receiving T cell preparations with a higher CD4+ T cell proportion show better clinical responses, the specificity of the infused CD4+ component has remained completely unknown. We generated LCL-stimulated T cell lines from 21 donors according to clinical protocols, and analyzed the antigen specificity of the CD4+ component in EBV-specific T cell preparations using a genetically engineered EBV mutant that is unable to enter the lytic cycle, and recombinantly expressed and purified EBV proteins. Surprisingly, CD4+ T cell lines from acutely and persistently EBV-infected donors consistently responded against EBV lytic cycle antigens and autoantigens, but barely against latent cycle antigens of EBV hitherto considered principal immunotherapeutic targets. Lytic cycle antigens were predominantly derived from structural proteins of the virus presented on MHC II via receptor-mediated uptake of released viral particles, but also included abundant infected cell proteins whose presentation involved intercellular protein transfer. Importantly, presentation of virion antigens was severely impaired by acyclovir treatment of stimulator cells, as currently performed in most clinical protocols. These results indicate that structural antigens of EBV are the immunodominant targets of CD4+ T cells in LCL-stimulated T cell preparations. These findings add to our understanding of the immune response against this human tumor-virus and have important implications for the improvement of immunotherapeutic strategies against EBV

    Charged ultrafiltration membranes based on TEMPO-oxidized cellulose nanofibrils/poly(vinyl alcohol) antifouling coating

    Get PDF
    This study reports the potential of TEMPO-oxidized cellulose nanofibrils (T-CNF)/poly(vinyl alcohol) (PVA) coatings to develop functionalized membranes in the ultrafiltration regime with outstanding antifouling performance and dimensional/pH stability. PVA acts as an anchoring phase interacting with the polyethersulfone (PES) substrate and stabilizing for the hygroscopic T-CNF via crosslinking. The T-CNF/PVA coated PES membranes showed a nano-textured surface, a change in the surface charge, and improved mechanical properties compared to the original PES substrate. A low reduction (4%) in permeance was observed for the coated membranes, attributable to the nanometric coating thickness, surface charge, and hydrophilic nature of the coated layer. The coated membranes exhibited charge specific adsorption driven by electrostatic interaction combined with rejection due to size exclusion (MWCO 530 kDa that correspond to a size of ∼35–40 nm). Furthermore, a significant reduction in organic fouling and biofouling was found for T-CNF/PVA coated membranes when exposed to BSA and E. coli. The results demonstrate the potential of simple modifications using nanocellulose to manipulate the pore structure and surface chemistry of commercially available membranes without compromising on permeability and mechanical stability

    Mechanical properties and electrical surface charges of microfibrillated cellulose/imidazole-modified polyketone composite membranes

    Get PDF
    In the present work, microfibrillated cellulose (MFC) suspensions were produced by high-pressure homogenization and subsequently used to fabricate MFC membranes (C-1) by vacuum filtration followed by hot-pressing. A polyketone (PK50) was chemically modified by Paal-Knorr reaction to graft imidazole (IM) functional groups along its backbone structure. The resulting polymer is referred to as PK50IM80. By solution impregnation, C-1 was immersed in an aqueous solution of PK50IM80 and subsequently hot pressed, resulting in the fabrication of MFC/PK50IM80 composite membranes (C-IMP). Another method, referred to as solution mixing, consisted in adding MFC into an aqueous solution of PK50IM80 followed by vacuum filtration and hot-pressing to obtain MFC/PK50IM80 composite membranes (C-MEZC). C-IMP and C-MEZC were characterized by a wide range of analytical techniques including, X-ray photoelectron spectroscopy, Fourier-transform infrared chemical imaging, scanning electron microscopy, atomic force microscopy, dynamical mechanical analysis, tensile testing as well as streaming zeta potential, and compared to C-1 (reference material). The results suggested that C-IMP possess a more homogeneous distribution of PK50IM80 at their surface compared to C-MEZC. C-IMP was found to possess significantly enhanced Young's modulus compared to C-1 and C-MEZC. The tensile strength of C-IMP was found to improve significantly compared to C-1, whereas C-1 possessed significantly higher tensile index than C-IMP and C-MEZC. Furthermore, the presence of PK50IM80 at the surface of MFC was found to significantly shift the isoelectric point (IEP) of the membranes from pH 2.3 to a maximum value of 4.5 for C-IMP. Above the IEP, C-IMP and C-MEZC were found to possess significantly less negative electrical surface charges (plateau value of -25 mV at pH 10) when compared to C-1 (plateau value of -42 mV at pH 10). Our approach may have implication to broaden the range of filtration applications of MFC-based membranes

    Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1

    Get PDF
    Background: Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders causing learning disabilities by mutations in the neurofibromin gene, an important inhibitor of the RAS pathway. In a mouse model of NF1, a loss of function mutation of the neurofibromin gene resulted in increased gamma aminobutyric acid (GABA)-mediated inhibition which led to decreased synaptic plasticity and deficits in attentional performance. Most importantly, these defictis were normalized by lovastatin. This placebo-controlled, double blind, randomized study aimed to investigate synaptic plasticity and cognition in humans with NF1 and tried to answer the question whether potential deficits may be rescued by lovastatin. Methods: In NF1 patients (n = 11; 19-44 years) and healthy controls (HC; n = 11; 19-31 years) paired pulse transcranial magnetic stimulation (TMS) was used to study intracortical inhibition (paired pulse) and synaptic plasticity (paired associative stimulation). On behavioural level the Test of Attentional Performance (TAP) was used. To study the effect of 200 mg lovastatin for 4 days on all these parameters, a placebo-controlled, double blind, randomized trial was performed. Results: In patients with NF1, lovastatin revealed significant decrease of intracortical inhibition, significant increase of synaptic plasticity as well as significant increase of phasic alertness. Compared to HC, patients with NF1 exposed increased intracortical inhibition, impaired synaptic plasticity and deficits in phasic alertness. Conclusions: This study demonstrates, for the first time, a link between a pathological RAS pathway activity, intracortical inhibition and impaired synaptic plasticity and its rescue by lovastatin in humans. Our findings revealed mechanisms of attention disorders in humans with NF1 and support the idea of a potential clinical benefit of lovastatin as a therapeutic option

    Cancer Stem Cell-Like Cells Derived from Malignant Peripheral Nerve Sheath Tumors

    Get PDF
    This study aims to examine whether or not cancer stem cells exist in malignant peripheral nerve sheath tumors (MPNST). Cells of established lines, primary cultures and freshly dissected tumors were cultured in serum free conditions supplemented with epidermal and fibroblast growth factors. From one established human MPNST cell line, S462, cells meeting the criteria for cancer stem cells were isolated. Clonal spheres were obtained, which could be passaged multiple times. Enrichment of stem cell-like cells in these spheres was also supported by increased expression of stem cell markers such as CD133, Oct4, Nestin and NGFR, and decreased expression of mature cell markers such as CD90 and NCAM. Furthermore, cells of these clonal S462 spheres differentiated into Schwann cells, smooth muscle/fibroblast and neurons-like cells under specific differentiation-inducing cultural conditions. Finally, subcutaneous injection of the spheres into immunodeficient nude mice led to tumor formation at a higher rate compared to the parental adherent cells (66% versus 10% at 2.5×105). These results provide evidence for the existence of cancer stem cell-like cells in malignant peripheral nerve sheath tumors

    Predictive value of coronary calcifications for future cardiac events in asymptomatic patients with diabetes mellitus: A prospective study in 716 patients over 8 years

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To establish an efficient prophylaxis of coronary artery disease reliable risk stratification is crucial, especially in the high risk population of patients suffering from diabetes mellitus. This prospective study determined the predictive value of coronary calcifications for future cardiovascular events in asymptomatic patients with diabetes mellitus.</p> <p>Methods</p> <p>We included 716 patients suffering from diabetes mellitus (430 men, 286 women, age 55.2 ± 15.2 years) in this study. On study entry all patients were asymptomatic and had no history of coronary artery disease. In addition, all patients showed no signs of coronary artery disease in ECG, stress ECG or echocardiography. Coronary calcifications were determined with the Imatron C 150 XP electron beam computed tomograph. For quantification of coronary calcifications we calculated the Agatston score. After a mean observation period of 8.1 ± 1.1 years patients were contacted and the event rate of cardiac death (CD) and myocardial infarction (MI) was determined.</p> <p>Results</p> <p>During the observation period 40 patients suffered from MI, 36 patients died from acute CD. The initial Agatston score in patients that suffered from MI or died from CD (475 ± 208) was significantly higher compared to those without cardiac events (236 ± 199, p < 0.01). An Agatston score above 400 was associated with a significantly higher annualised event rate for cardiovascular events (5.6% versus 0.7%, p < 0.01). No cardiac events were observed in patients with exclusion of coronary calcifications. Compared to the Framingham risk score and the UKPDS score the Agatston score showed a significantly higher diagnostic accuracy in the prediction of MI with an area under the ROC curve of 0.77 versus 0.68, and 0.71, respectively, p < 0.01.</p> <p>Conclusion</p> <p>By determination of coronary calcifications patients at risk for future MI and CD could be identified within an asymptomatic high risk group of patients suffering from diabetes mellitus. On the other hand future events could be excluded in patients without coronary calcifications.</p
    corecore