4 research outputs found
Altered Gene Expression Profile of the Hypothalamic Arcuate Nucleus of Male Mice Suggests Profound Developmental Changes in Peptidergic Signaling
Neuropeptides of the hypothalamic arcuate nucleus (ARC) regulate important homeostatic and endocrine functions and also play critical roles in pubertal development. Altered peptidergic and amino acidergic neurotransmission accompanying pubertal maturation of the ARC are not fully understood. Here we studied the developmental shift in the gene expression profile of the ARC of male mice. RNA samples for quantitative RT-PCR studies were isolated from the ARC of day-14 infantile and day-60 adult male mice with laser-capture microdissection. The expression of 18 neuropeptide-, 15 neuropeptide receptor-, 4 sex steroid receptor and 6 classic neurotransmitter marker mRNAs were compared between the two timepoints. Adult animals showed increased mRNA levels encoding cocaine- and amphetamine-regulated transcript, galanin-like peptide, dynorphin, kisspeptin, proopiomelanocortin, proenkephalin and galanin and reduced expression of mRNAs for pituitary adenylate cyclase activating peptide, calcitonin gene-related peptide, neuropeptide Y, substance P, agouti-related protein, neurotensin and growth hormone-releasing hormone. From the neuropeptide receptors tested, melanocortin receptor-4 showed the most striking (5-fold) increase. Melanocortin receptor-3 and the Y1 and Y5 neuropeptide Y receptors increased 1.5-1.8-fold, whereas delta-opioid receptor and neurotensin receptor-1 transcripts were reduced by 27 and 21%, respectively. Androgen-, progesterone- and alpha-estrogen receptor transcripts increased by 54-72%. The mRNAs of glutamic acid decarboxylase 65, and 67, vesicular GABA transporter and choline acetyltransferase remained unchanged. Tyrosine hydroxylase mRNA increased by 44%, whereas type-2 vesicular glutamate transporter mRNA decreased by 43% by adulthood. Many of the developmental changes we revealed in this study suggest reduced inhibitory and/or enhanced excitatory neuropeptidergic drive on fertility in adult animals. (c) 2015 S. Karger AG, Basel
NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice
The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1 . The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1 -deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1 -deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency
NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice.
The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency