311 research outputs found

    Model transcriptional networks with continuously varying expression levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>At a time when genomes are being sequenced by the hundreds, much attention has shifted from identifying genes and phenotypes to understanding the networks of interactions among genes. We developed a gene network developmental model expanding on previous models of transcription regulatory networks. In our model, each network is described by a matrix representing the interactions between transcription factors, and a vector of continuous values representing the transcription factor expression in an individual.</p> <p>Results</p> <p>In this work we used the gene network model to look at the impact of mating as well as insertions and deletions of genes in the evolution of complexity of these networks. We found that the natural process of diploid mating increases the likelihood of maintaining complexity, especially in higher order networks (more than 10 genes). We also show that gene insertion is a very efficient way to add more genes to a network as it provides a much higher chance of developmental stability.</p> <p>Conclusions</p> <p>The continuous model affords a more complete view of the evolution of interacting genes. The notion of a continuous output vector also incorporates the reality of gene networks and graded concentrations of gene products.</p

    Semiconductor-based DNA sequencing of histone modification states

    Get PDF
    The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or \u27scaffold\u27) of haplotypes across each chromosome. We then phase the sequence data \u27onto\u27 this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Medulloblastoma Exome Sequencing Uncovers Subtype-Specific Somatic Mutations

    Get PDF
    Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma

    Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens

    Get PDF
    Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44) and the complete gene of pvcsp (n = 47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines

    Study of charmonium and charmonium-like contributions in B+ → J/ψηK+ decays

    Get PDF
    A study of B+→ J/ψηK+ decays, followed by J/ψ → μ+μ− and η → γγ, is performed using a dataset collected with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. The J/ψη mass spectrum is investigated for contributions from charmonia and charmonium-like states. Evidence is found for the B+→ (ψ2(3823) → J/ψη)K+ and B+→ (ψ(4040) → J/ψη)K+ decays with significance of 3.4 and 4.7 standard deviations, respectively. This constitutes the first evidence for the ψ2(3823) → J/ψη decay

    Observation of the doubly charmed baryon decay Ξcc++→Ξc′+π+

    Get PDF
    The Ξcc++→Ξc′+π+ decay is observed using proton-proton collisions collected by the LHCb experiment at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4 fb−1. The Ξcc++→Ξc′+π+ decay is reconstructed partially, where the photon from the Ξc′+→Ξc+γ decay is not reconstructed and the pK−π+ final state of the Ξc+ baryon is employed. The Ξcc++→Ξc′+π+branching fraction relative to that of the Ξcc++→Ξc+π+ decay is measured to be 1.41 ± 0.17 ± 0.10, where the first uncertainty is statistical and the second systematic. [Figure not available: see fulltext.

    Measurement of antiproton production from antihyperon decays in pHe collisions at √sNN=110GeV

    Get PDF
    The interpretation of cosmic antiproton flux measurements from space-borne experiments is currently limited by the knowledge of the antiproton production cross-section in collisions between primary cosmic rays and the interstellar medium. Using collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest in the proximity of the interaction region of the LHCb experiment, the ratio of antiprotons originating from antihyperon decays to prompt production is measured for antiproton momenta between 12 and 110GeV\!/c . The dominant antihyperon contribution, namely Λ¯ → p¯ π+ decays from promptly produced Λ¯ particles, is also exclusively measured. The results complement the measurement of prompt antiproton production obtained from the same data sample. At the energy scale of this measurement, the antihyperon contributions to antiproton production are observed to be significantly larger than predictions of commonly used hadronic production models
    corecore