8,653 research outputs found

    Safety management of a complex R and D ground operating system

    Get PDF
    A perspective on safety program management was developed for a complex R&D operating system, such as the NASA-Lewis Research Center. Using a systems approach, hazardous operations are subjected to third-party reviews by designated-area safety committees and are maintained under safety permit controls. To insure personnel alertness, emergency containment forces and employees are trained in dry-run emergency simulation exercises. The keys to real safety effectiveness are top management support and visibility of residual risks

    Global gyrokinetic simulations of ITG turbulence in the configuration space of the Wendelstein 7-X stellarator

    Full text link
    We study the effect of turbulent transport in different magnetic configurations of the Weldenstein 7-X stellarator. In particular, we performed direct numerical simulations with the global gyrokinetic code GENE-3D, modeling the behavior of Ion Temperature Gradient turbulence in the Standard, High-Mirror, and Low-Mirror configurations of W7-X. We found that the Low-Mirror configuration produces more transport than both the High-Mirror and the Standard configurations. By comparison with radially local simulations, we have demonstrated the importance of performing global nonlinear simulations to predict the turbulent fluxes quantitatively

    Homothetic Wyman Spacetimes

    Get PDF
    The time-dependent, spherically symmetric, Wyman sector of the Unified Field Theory is shown to be equivalent to a self-gravitating scalar field with a positive-definite, repulsive self-interaction potential. A homothetic symmetry is imposed on the fundamental tensor, and the resulting autonomous system is numerically integrated. Near the critical point (between the collapsing and non-collapsing spacetimes) the system displays an approximately periodic alternation between collapsing and dispersive epochs.Comment: 15 pages with 6 figures; requires amsart, amssymb, amsmath, graphicx; formatted for publication in Int. J. Mod. Phys.

    Vortex spectrum in superfluid turbulence: interpretation of a recent experiment

    Full text link
    We discuss a recent experiment in which the spectrum of the vortex line density fluctuations has been measured in superfluid turbulence. The observed frequency dependence of the spectrum, f5/3f^{-5/3}, disagrees with classical vorticity spectra if, following the literature, the vortex line density is interpreted as a measure of the vorticity or enstrophy. We argue that the disagrement is solved if the vortex line density field is decomposed into a polarised field (which carries most of the energy) and an isotropic field (which is responsible for the spectrum).Comment: Submitted for publication http://crtbt.grenoble.cnrs.fr/helio/GROUP/infa.html http://www.mas.ncl.ac.uk/~ncfb

    Quantification of finite-temperature effects on adsorption geometries of π\pi-conjugated molecules

    Get PDF
    The adsorption structure of the molecular switch azobenzene on Ag(111) is investigated by a combination of normal incidence x-ray standing waves and dispersion-corrected density functional theory. The inclusion of non-local collective substrate response (screening) in the dispersion correction improves the description of dense monolayers of azobenzene, which exhibit a substantial torsion of the molecule. Nevertheless, for a quantitative agreement with experiment explicit consideration of the effect of vibrational mode anharmonicity on the adsorption geometry is crucial.Comment: 12 pages, 3 figure

    Linking Classical and Quantum Key Agreement: Is There "Bound Information"?

    Get PDF
    After carrying out a protocol for quantum key agreement over a noisy quantum channel, the parties Alice and Bob must process the raw key in order to end up with identical keys about which the adversary has virtually no information. In principle, both classical and quantum protocols can be used for this processing. It is a natural question which type of protocols is more powerful. We prove for general states but under the assumption of incoherent eavesdropping that Alice and Bob share some so-called intrinsic information in their classical random variables, resulting from optimal measurements, if and only if the parties' quantum systems are entangled. In addition, we provide evidence that the potentials of classical and of quantum protocols are equal in every situation. Consequently, many techniques and results from quantum information theory directly apply to problems in classical information theory, and vice versa. For instance, it was previously believed that two parties can carry out unconditionally secure key agreement as long as they share some intrinsic information in the adversary's view. The analysis of this purely classical problem from the quantum information-theoretic viewpoint shows that this is true in the binary case, but false in general. More explicitly, bound entanglement, i.e., entanglement that cannot be purified by any quantum protocol, has a classical counterpart. This "bound intrinsic information" cannot be distilled to a secret key by any classical protocol. As another application we propose a measure for entanglement based on classical information-theoretic quantities.Comment: Accepted for Crypto 2000. 17 page

    Linearisation Instabilities of the Massive Nonsymmetric Gravitational Theory

    Get PDF
    The massive nonsymmetric gravitational theory is shown to posses a linearisation instability at purely GR field configurations, disallowing the use of the linear approximation in these situations. It is also shown that arbitrarily small antisymmetric sector Cauchy data leads to singular evolution unless an ad hoc condition is imposed on the initial data hypersurface.Comment: 14 pages, IOP style for submission to CQG. Minor changes and additional background material adde

    ESC CardioMed

    Get PDF
    Reprinted with permission from: Eur Heart J. 2018; 19: 959–961Reprinted with permission from: Eur Heart J. 2018; 19: 959–96
    corecore