79 research outputs found

    Ballistic one-dimensional holes with strong g-factor anisotropy in germanium

    Get PDF
    We report experimental evidence of ballistic hole transport in one-dimensional quantum wires gate-defined in a strained SiGe/Ge/SiGe quantum well. At zero magnetic field, we observe conductance plateaus at integer multiples of 2e2/h. At finite magnetic field, the splitting of these plateaus by Zeeman effect reveals largely anisotropic g-factors with absolute values below 1 in the quantum-well plane, and exceeding 10 out-of-plane. This g-factor anisotropy is consistent with a heavy-hole character of the propagating valence-band states, which is in line with a predominant confinement in the growth direction. Remarkably, we observe quantized ballistic conductance in device channels up to 600 nm long. These findings mark an important step toward the realization of novel devices for applications in quantum spintronics

    A CMOS silicon spin qubit

    Full text link
    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot (QD) encoding a hole spin qubit, the second one a QD used for the qubit readout. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. Our result opens a viable path to qubit up-scaling through a readily exploitable CMOS platform.Comment: 12 pages, 4 figure

    Pauli spin blockade in CMOS double quantum dot devices

    Full text link
    Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.Comment: 5 pages , 4 figure

    Tunable hole spin-photon interaction based on g-matrix modulation

    Full text link
    We consider a spin circuit-QED device where a superconducting microwave resonator is capacitively coupled to a single hole confined in a semiconductor quantum dot. Thanks to the strong spin-orbit coupling intrinsic to valence-band states, the gyromagnetic g-matrix of the hole can be modulated electrically. This modulation couples the photons in the resonator to the hole spin. We show that the applied gate voltages and the magnetic-field orientation enable a versatile control of the spin-photon interaction, whose character can be switched from fully transverse to fully longitudinal. The longitudinal coupling is actually maximal when the transverse one vanishes and vice-versa. This "reciprocal sweetness" results from geometrical properties of the g-matrix and protects the spin against dephasing or relaxation. We estimate coupling rates reaching ~ 10 MHz in realistic settings and discuss potential circuit-QED applications harnessing either the transverse or the longitudinal spin-photon interaction. Furthermore, we demonstrate that the g-matrix curvature can be used to achieve parametric longitudinal coupling with enhanced coherence

    Hole weak anti-localization in a strained-Ge surface quantum well

    Get PDF
    We report a magneto-transport study of a two-dimensional hole gas confined to a strained Ge quantum well grown on a relaxed Si0.2Ge0.8 virtual substrate. The conductivity of the hole gas measured as a function of a perpendicular magnetic field exhibits a zero-field peak resulting from weak anti-localization. The peak develops and becomes stronger upon increasing the hole density by means of a top gate electrode. This behavior is consistent with a Rashba-type spin-orbit coupling whose strength is proportional to the perpendicular electric field and hence to the carrier density. In the low-density, the single-subband regime, by fitting the weak anti-localization peak to an analytic model, we extract the characteristic transport time scales and a spin splitting energy ΔSO∼ΔSO∼ 1 meV. Tight-binding calculations show that ΔSO is dominated by a cubic term in the in-plane wave vector. Finally, we observe a weak anti-localization peak also for magnetic fields parallel to the quantum well and associate this finding to an effect of intersubband scattering induced by interface defects

    Mid-infrared laser light nulling experiment using single-mode conductive waveguides

    Full text link
    Aims: In the context of space interferometry missions devoted to the search of exo-Earths, this paper investigates the capabilities of new single mode conductive waveguides at providing modal filtering in an infrared and monochromatic nulling experiment; Methods: A Michelson laser interferometer with a co-axial beam combination scheme at 10.6 microns is used. After introducing a Pi phase shift using a translating mirror, dynamic and static measurements of the nulling ratio are performed in the two cases where modal filtering is implemented and suppressed. No additional active control of the wavefront errors is involved. Results: We achieve on average a statistical nulling ratio of 2.5e-4 with a 1-sigma upper limit of 6e-4, while a best null of 5.6e-5 is obtained in static mode. At the moment, the impact of external vibrations limits our ability to maintain the null to 10 to 20 seconds.; Conclusions: A positive effect of SM conductive waveguide on modal filtering has been observed in this study. Further improvement of the null should be possible with proper mechanical isolation of the setup.Comment: Accepted in A&A, 7 pages, 5 figure
    corecore