9 research outputs found

    Photometric type Ia supernova surveys in narrow band filters

    Full text link
    We study the characteristics of a narrow band type Ia supernova survey through simulations based on the upcoming Javalambre Physics of the accelerating universe Astrophysical Survey (J-PAS). This unique survey has the capabilities of obtaining distances, redshifts, and the SN type from a single experiment thereby circumventing the challenges faced by the resource-intensive spectroscopic follow-up observations. We analyse the flux measurements signal-to-noise ratio and bias, the supernova typing performance, the ability to recover light curve parameters given by the SALT2 model, the photometric redshift precision from type Ia supernova light curves and the effects of systematic errors on the data. We show that such a survey is not only feasible but may yield large type Ia supernova samples (up to 250 supernovae at z<0.5z<0.5 per month of search) with low core collapse contamination (∼1.5\sim 1.5 per cent), good precision on the SALT2 parameters (average σmB=0.063\sigma_{m_B}=0.063, σx1=0.47\sigma_{x_1}=0.47 and σc=0.040\sigma_c=0.040) and on the distance modulus (average σμ=0.16\sigma_{\mu}=0.16, assuming an intrinsic scatter σint=0.14\sigma_{\mathrm{int}}=0.14), with identified systematic uncertainties σsys≲0.10σstat\sigma_{\mathrm{sys}}\lesssim 0.10 \sigma_{\mathrm{stat}}. Moreover, the filters are narrow enough to detect most spectral features and obtain excellent photometric redshift precision of σz=0.005\sigma_z=0.005, apart from ∼\sim 2 per cent of outliers. We also present a few strategies for optimising the survey's outcome. Together with the detailed host galaxy information, narrow band surveys can be very valuable for the study of supernova rates, spectral feature relations, intrinsic colour variations and correlations between supernova and host galaxy properties, all of which are important information for supernova cosmological applications.Comment: 20 pages, 12 tables and 26 figures. Version accepted by MNRAS, with results slightly different from previous on

    Dark Interactions and Cosmological Fine-Tuning

    Full text link
    Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the Λ\LambdaCDM model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme, this paper aims to unite these different approaches and shed some light as to whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.Comment: 13 pages, 9 figures, accepted for publication in JCAP. Minor corrections, one figure replaced, references adde
    corecore