269 research outputs found

    On the benefits of self-taught learning for brain decoding

    Full text link
    We study the benefits of using a large public neuroimaging database composed of fMRI statistic maps, in a self-taught learning framework, for improving brain decoding on new tasks. First, we leverage the NeuroVault database to train, on a selection of relevant statistic maps, a convolutional autoencoder to reconstruct these maps. Then, we use this trained encoder to initialize a supervised convolutional neural network to classify tasks or cognitive processes of unseen statistic maps from large collections of the NeuroVault database. We show that such a self-taught learning process always improves the performance of the classifiers but the magnitude of the benefits strongly depends on the number of data available both for pre-training and finetuning the models and on the complexity of the targeted downstream task

    Reviewing neuroimaging flexibility: Components and records of provenance

    Get PDF
    International audienc

    Exploring fMRI Results Space : 31 Variants of an fMRI Analysis in AFNI, FSL, and SPM

    Get PDF
    Data sharing is becoming a priority in functional Magnetic Resonance Imaging (fMRI) research, but the lack of a standard format for shared data is an obstacle (Poline et al., 2012; Poldrack and Gorgolewski, 2014). This is especially true for information about data provenance, including auxiliary information such as participant characteristics and task descriptions. The three most commonly used analysis software packages [AFNI1 (Cox, 1996), FSL2 (Jenkinson et al., 2012), and SPM3 (Penny et al., 2011)] broadly conduct the same analysis, but differ in how fundamental concepts are described, and have a myriad of differences in the pre-processing and modeling steps. The practical consequence is that sharing analyzed data is further complicated by the idiosyncrasies of the particular software used

    Anatomie du tractus cortico-spinal en tractographie : évaluation d'une méthode déterministe

    No full text
    Introduction : Si la substance grise a Ă©tĂ© largement Ă©tudiĂ©e en IRM fonctionnelle (IRMf), l'Ă©tude in vivo des tractus de substance blanche est plus rĂ©cente. L'IRM en tenseur de diffusion permet dĂ©sormais d'Ă©tudier son anatomie grĂące Ă  la tractographie. Notre objectif Ă©tait l'Ă©tude du tractus cortico-spinal (TCS) en tenseur de diffusion et en tractographie chez des sujets sains. MatĂ©riel et mĂ©thodes : La population concernait 15 volontaires sains droitiers. Une IRM 3T anatomique T1 a permis la dĂ©termination des rĂ©gions d'intĂ©rĂȘts (ROI) au niveau du mĂ©sencĂ©phale. L'IRMf a Ă©tĂ© analysĂ©e par le logiciel SPM5 afin d'obtenir une carte d'activation reprĂ©sentant l'activation motrice de la main au niveau du cortex moteur. L'IRM de diffusion a servi Ă  reconstruire un tenseur (matrice 3x3) en chaque voxel de l'image. AprĂšs recalage des 3 sĂ©quences, nous avons effectuĂ© une tractographie du TCS par une mĂ©thode dĂ©terministe utilisant l'algorithme (Mori et al). Les tractographies ont Ă©tĂ© rĂ©alisĂ©es entre les deux ROI de chaque cĂŽtĂ©. RĂ©sultat : Cette mĂ©thode donne une reprĂ©sentation anatomique du TSC mĂ©connaissent la partie ventro-latĂ©rale de la ROI fonctionnelle. Cette partie correspond aux croisements de fibres des autres faisceaux de fibres blanches traversant la rĂ©gion. Conclusion : La limite principale du tenseur se situe au niveau des croisements des fibres, car il ne reprĂ©sente correctement qu'une seule direction de diffusion. Cela ne permet pas actuellement de retrouver l'anatomie des faisceaux de fibres telle que nous la connaissons pas les dissections. Les mĂ©thodes dĂ©terministes mono-directionnelles ne sont pas suffisantes notamment dans le contexte de la chirurgie guidĂ©e par l'image. Elles doivent ĂȘtre enrichies de mĂ©thodes multidirectionnelles en utilisant des algorithmes plus complexes

    The Open Brain Consent: Informing research participants and obtaining consent to share brain imaging data

    Get PDF
    Having the means to share research data openly is essential to modern science. For human research, a key aspect in this endeavor is obtaining consent from participants, not just to take part in a study, which is a basic ethical principle, but also to share their data with the scientific community. To ensure that the participants' privacy is respected, national and/or supranational regulations and laws are in place. It is, however, not always clear to researchers what the implications of those are, nor how to comply with them. The Open Brain Consent (https://open-brain-consent.readthedocs.io) is an international initiative that aims to provide researchers in the brain imaging community with information about data sharing options and tools. We present here a short history of this project and its latest developments, and share pointers to consent forms, including a template consent form that is compliant with the EU general data protection regulation. We also share pointers to an associated data user agreement that is not only useful in the EU context, but also for any researchers dealing with personal (clinical) data elsewhere

    The past, present, and future of the Brain Imaging Data Structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS
    • 

    corecore