1,252 research outputs found

    Electronic dynamics and frequency-dependent effects in circularly polarized strong-field physics

    Get PDF
    We analyze, quantum mechanically, the dynamics of ionization with a strong, circularly polarized, laser field. We show that the main source for non-adiabatic effects is connected to an effective barrier lowering due to the laser frequency. Such non-adiabatic effects manifest themselves through ionization rates and yields that depart up to more than one order of magnitude from a static-field configuration. Beyond circular polarization, these results show the limits of standard instantaneous - static-field like - interpretation of laser-matter interaction and the great need for including time dependent electronic dynamics

    Circularly Polarized Molecular High Harmonic Generation Using a Bicircular Laser

    Get PDF
    We investigate the process of circularly polarized high harmonic generation in molecules using a bicircular laser field. In this context, we show that molecules offer a very robust framework for the production of circularly polarized harmonics, provided their symmetry is compatible with that of the laser field. Using a discrete time-dependent symmetry analysis, we show how all the features (harmonic order and polarization) of spectra can be explained and predicted. The symmetry analysis is generic and can easily be applied to other target and/or field configurations

    Measurement of the ^8B solar neutrino flux with the KamLAND liquid scintillator detector

    Get PDF
    We report a measurement of the neutrino-electron elastic scattering rate from ^8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5-MeV analysis threshold is 1.49 ± 0.14(stat) ± 0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a ^8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77 ± 0.26(stat) ± 0.32(syst) ×10^6 cm^(−2_s^(−1). The analysis threshold is driven by ^(208)Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic ^(11)Be. The measured rate is consistent with existing measurements and with standard solar model predictions which include matter-enhanced neutrino oscillation

    Quantum-classical correspondence in circularly polarized high harmonic generation

    Get PDF
    Using numerical simulations, we show that atomic high order harmonic generation, HHG, with a circularly polarized laser field offers an ideal framework for quantum-classical correspondence in strong field physics. With an appropriate initialization of the system, corresponding to a superposition of ground and excited state(s), simulated HHG spectra display a narrow strip of strong harmonic radiation preceded by a gap of missing harmonics in the lower part of the spectrum. In specific regions of the spectra, HHG tends to lock to circularly polarized harmonic emission. All these properties are shown to be closely related to a set of key classical periodic orbits that organize the recollision dynamics in an intense, circularly polarized field

    Production of radioactive isotopes through cosmic muon spallation in KamLAND

    Get PDF
    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in ν detectors, double-β-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of ^(11)C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y_n=(2.8±0.3)×10^(-4) μ^(-1) g^(-1) cm^2. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment

    Search for the Invisible Decay of Neutrons with KamLAND

    Get PDF
    The Kamioka Liquid scintillator Anti-Neutrino Detector is used in a search for single neutron or two-neutron intranuclear disappearance that would produce holes in the s-shell energy level of ^(12)C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (inv), e.g., n→3ν or nn→2ν. The deexcitation of the corresponding daughter nucleus results in a sequence of space and time-correlated events observable in the liquid scintillator detector. We report on new limits for one- and two-neutron disappearance: τ(n→inv) > 5.8 × 10^(29) years and τ(nn→inv) > 1.4 × 10^(30) years at 90% C.L. These results represent an improvement of factors of ~3 and > 10^4 over previous experiments

    Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion

    Get PDF
    We present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 v_e candidate events with energies above 3.4 MeV compared to 365.2±23.7 events expected in the absence of neutrino oscillation. Accounting for 17.8±7.3 expected background events, the statistical significance for reactor v_e over bar (e) disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from v_e oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives Δm^2=7.9_(-0.5)^(+0.6)x10^(-5) eV^2. A global analysis of data from KamLAND and solar-neutrino experiments yields Δm^2=7.9_(-0.5)^(+0.6)x10^(-5) eV^2 and tan^2θ=0.40_(-0.07)^(+0.10), the most precise determination to date

    High Sensitivity Search for v_e’s from the Sun and Other Sources at KamLAND

    Get PDF
    Data corresponding to a KamLAND detector exposure of 0.28 kton yr has been used to search for ν̅ _e’s in the energy range 8.3 < E_(ν̅e) < 14.8  MeV. No candidates were found for an expected background of 1.1±0.4 events. This result can be used to obtain a limit on ν̅_e fluxes of any origin. Assuming that all ν̅_e flux has its origin in the Sun and has the characteristic ^8B solar ν_e energy spectrum, we obtain an upper limit of 3.7×10^2  cm^(-2) ^(s-1) (90% C.L.) on the ν̅_e flux. We interpret this limit, corresponding to 2.8×10^(-4) of the standard solar model ^8B ν_e flux, in the framework of spin-flavor precession and neutrino decay models

    Cost effect of surgeon and patient discretion in regard to cataract surgery

    Get PDF
    Purpose: The purpose of this study is to examine the cost effect of surgeon and patient discretion in regard to cataract surgery and how this affects population health care costs. Methods: A model of cataract progression was created from preexisting published data and combined with mortality data and Medicare cataract statistics to estimate the effect of mortality on decreasing the rate of cataract surgery if surgery was delayed until any cataract progression occurred. Results: Five-year cataract progression rates were determined for a given patient age, sex, and type of cataract. Combined with 5-year death rates, delaying surgery until progression occurred resulted in a 1.1% decrease in surgery for nuclear sclerosis at age 45 that increased to a 33.8% decrease by age 90; a 1.5% decrease in surgery for cortical cataract at age 45 that increased to a 51.1% decrease by age 90; and a 1.6% decrease in surgery for posterior subcapsular at age 45 that increased to a 59.7% decrease by age 90. The effect of this decrease in surgical volume on Medicare was estimated to result in a 13% overall decrease in cataract surgery annually at a cost of ~$660 million dollars per year. Conclusion: Overall, we conclude that surgeon and patient discretion in regard to cataract surgery has a substantial cost effect with the potential to reduce surgical volume by as much as 13% by the decision to delay surgery as a result of patient mortality
    • …
    corecore