33 research outputs found

    Phenotypic and Genotypic Characteristics of Members of the Genus Streptobacillus

    Get PDF
    The genus Streptobacillus (S.) remained monotypic for almost 90 years until two new species were recently described. The type species, S. moniliformis, is one of the two etiological agents of rat bite fever, an under-diagnosed, worldwide occurring zoonosis. In a polyphasic approach field isolates and reference strains of S. moniliformis, S. hongkongensis, S. felis as well as divergent isolates were characterized by comparison of molecular data (n = 29) and from the majority also by their physiological as well as proteomic properties (n = 22). Based on growth-independent physiological profiling using VITEK2-compact, API ZYM and the Micronaut system fastidious growth-related difficulties could be overcome and streptobacilli could definitively be typed despite generally few differences. While differing in their isolation sites and dates, S. moniliformis isolates were found to possess almost identical spectra in matrix-assisted laser desorption ionization-time of flight mass spectrometry and Fourier transform infrared spectroscopy. Spectroscopic methods facilitated differentiation of S. moniliformis, S. hongkongensis and S. felis as well as one divergent isolate. Sequencing of 16S rRNA gene as well as functional genes groEL, recA and gyrB revealed only little intraspecific variability, but generally proved suitable for interspecies discrimination between all three taxa and two groups of divergent isolates.Hessian Ministry for the Environment, Climate Change, Agriculture and Consumer Protection (HMUKLV)Hessian Ministry for the Environment, Climate Change, Agriculture and Consumer Protection (HMUKLV

    Rapid typing of Klebsiella pneumoniae and Pseudomonas aeruginosa by Fourier-transform Infrared spectroscopy informs infection control in veterinary settings

    Get PDF
    IntroductionThe emergence of multi-drug resistant (MDR) pathogens linked to healthcare-associated infections (HCAIs) is an increasing concern in modern veterinary practice. Thus, rapid bacterial typing for real-time tracking of MDR hospital dissemination is still much needed to inform best infection control practices in a clinically relevant timeframe. To this end, the IR Biotyper using Fourier-Transform InfraRed (FTIR) spectroscopy has the potential to provide fast cluster analysis of potentially related organisms with substantial cost and turnaround time benefits.Materials and methodsA collection of MDR bacterial isolates (n = 199, comprising 92 Klebsiella pneumoniae and 107 Pseudomonas aeruginosa) obtained from companion animal (i.e., dogs, cats and horses) clinical investigations, faecal and environmental screening from four veterinary facilities between 2012 and 2019 was analysed retrospectively by FTIR spectroscopy. Its performance was compared against MLST extracted from whole genomes of a subset of clustering isolates (proportionally to cluster size) for investigation of potential nosocomial transmission between patients and the surrounding hospital environments.ResultsConcordance between the FTIR and MLST types was overall high for K. pneumoniae (Adjusted Rand Index [ARI] of 0.958) and poor for P. aeruginosa (ARI of 0.313). FTIR K. pneumoniae clusters (n = 7) accurately segregated into their respective veterinary facility with evidence of intra-hospital spread of K. pneumoniae between patients and environmental surfaces. Notably, K. pneumoniae ST147 intensely circulated at one Small Animal Hospital ICU. Conversely, Pseudomonas aeruginosa FTIR clusters (n = 18) commonly contained isolates of diversified hospital source and heterogeneous genetic background (as also genetically related isolates spread across different clusters); nonetheless, dissemination of some clones, such as P. aeruginosa ST2644 in the equine hospital, was apparent. Importantly, FTIR clustering of clinical, colonisation and/or environmental isolates sharing genomically similar backgrounds was seen for both MDR organisms, highlighting likely cross-contamination events that led to clonal dissemination within settings.ConclusionFTIR spectroscopy has high discriminatory power for hospital epidemiological surveillance of veterinary K. pneumoniae and could provide sufficient information to support early detection of clonal dissemination, facilitating implementation of appropriate infection control measures. Further work and careful optimisation need to be carried out to improve its performance for typing of P. aeruginosa veterinary isolates.</jats:sec

    Classification of Salmonella enterica of the (Para-)Typhoid Fever Group by Fourier-Transform Infrared (FTIR) Spectroscopy

    Get PDF
    Typhoidal and para-typhoidal Salmonella are major causes of bacteraemia in resource-limited countries. Diagnostic alternatives to laborious and resource-demanding serotyping are essential. Fourier transform infrared spectroscopy (FTIRS) is a rapidly developing and simple bacterial typing technology. In this study, we assessed the discriminatory power of the FTIRS-based IR Biotyper (Bruker Daltonik GmbH, Bremen, Germany), for the rapid and reliable identification of biochemically confirmed typhoid and paratyphoid fever-associated Salmonella isolates. In total, 359 isolates, comprising 30 S. Typhi, 23 S. Paratyphi A, 23 S. Paratyphi B, and 7 S. Paratyphi C, respectively and other phylogenetically closely related Salmonella serovars belonging to the serogroups O:2, O:4, O:7 and O:9 were tested. The strains were derived from clinical, environmental and food samples collected at different European sites. Applying artificial neural networks, specific automated classifiers were built to discriminate typhoidal serovars from non-typhoidal serovars within each of the four serogroups. The accuracy of the classifiers was 99.9%, 87.0%, 99.5% and 99.0% for Salmonella Typhi, Salmonella Paratyphi A, B and Salmonella Paratyphi C, respectively. The IR Biotyper is a promising tool for fast and reliable detection of typhoidal Salmonella. Hence, IR biotyping may serve as a suitable alternative to conventional approaches for surveillance and diagnostic purposes

    Typing and Species Identification of Clinical Klebsiella Isolates by Fourier Transform Infrared Spectroscopy and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    Get PDF
    Klebsiella pneumoniae and related species are frequent causes of nosocomial infections and outbreaks. Therefore, quick and reliable strain typing is crucial for the detection of transmission routes in the hospital. The aim of this study was to evaluate Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as rapid methods for typing clinical Klebsiella isolates in comparison to whole-genome sequencing (WGS), which was considered the gold standard for typing and identification. Here, 68 clinical Klebsiella strains were analyzed by WGS, FTIR, and MALDI-TOF MS. FTIR showed high discriminatory power in comparison to the WGS reference, whereas MALDI-TOF MS exhibited a low ability to type the isolates. MALDI-TOF mass spectra were further analyzed for peaks that showed high specificity for different Klebsiella species. Phylogenetic analysis revealed that the Klebsiella isolates comprised three different species: K. pneumoniae, K. variicola, and K. quasipneumoniae. Genome analysis showed that MALDI-TOF MS can be used to distinguish K. pneumoniae from K. variicola due to shifts of certain mass peaks. The peaks were tentatively identified as three ribosomal proteins (S15p, L28p, L31p) and one stress response protein (YjbJ), which exhibit amino acid differences between the two species. Overall, FTIR has high discriminatory power to recognize the clonal relationship of isolates, thus representing a valuable tool for rapid outbreak analysis and for the detection of transmission events due to fast turnaround times and low costs per sample. Furthermore, specific amino acid substitutions allow the discrimination of K. pneumoniae and K. variicola by MALDI-TOF MS

    comparative study of internalins and PrfA-dependent transcription in Listeria monocytogenes, L. ivanovii and L. seeligeri

    No full text
    Die Gattung Listeria umfasst sechs bekannte Arten ubiquitär vorkommender Gram-positiver, nicht sporulierender Stäbchenbakterien. Von diesen Spezies sind Listeria monocytogenes und L. ivanovii in der Lage bei Mensch und Tier das Krankheitsbild der Listeriose zu verursachen (Rocourt & Seeliger, 1985; Vázquez-Boland et al., 2001b; Weis & Seeliger, 1975), wobei L. ivanovii vorwiegend bei Tieren als Krankheitserreger vorkommt (Cummins et al., 1994; Hof & Hefner, 1988). L. monocytogenes gilt als wichtiges Modell für ein intrazelluläres Pathogen, das mit Hilfe seiner Internaline auch in nicht-professionelle Phagozyten invadieren (Gaillard et al., 1991; Lingnau et al., 1995) und sich dank einer Reihe weiterer Virulenzfaktoren im Zytoplasma vermehren, fortbewegen und Nachbarzellen infizieren kann (Tilney & Portnoy, 1989). Die beiden pathogenen Arten und das apathogene L. seeligeri besitzen eine als LIPI-1 bezeichnete Pathogenitätsinsel (Gouin et al., 1994; Kreft et al., 2002). Internalingene sind bei L. monocytogenes teilweise geclustert und bei L. ivanovii zu einem großen Teil in einer LIPI-2 genannten Pathogenitätsinsel organisiert (Domínguez-Bernal et al., 2006; Dramsi et al., 1997; Gaillard et al., 1991; Raffelsbauer et al., 1998). Die Expression vieler dieser Virulenzgene wird durch das zentrale Regulatorprotein PrfA gesteuert, dessen Gen prfA selbst Teil der LIPI-1 ist (Domínguez-Bernal et al., 2006; Leimeister-Wächter et al., 1990; Lingnau et al., 1995; Mengaud et al., 1991a). Im Rahmen dieser Arbeit sollten die Internaline InlC, InlE, InlG und InlH von L. monocytogenes näher untersucht werden. Dazu wurden rekombinante His6-markierte Internaline aufgereinigt und polyklonale Antiseren gegen die Internaline A, B, E, G und H hergestellt. Darüber hinaus gelang die Herstellung zweier monoklonaler Antikörper gegen InlG. Obwohl die Antikörper gegen InlG und InlE ihre rekombinanten Antigene gut dekorieren, konnten mit ihnen keine Proteine in Zellwand- oder Überstandspräparaten von L. monocytogenes EGD und EGDe detektiert werden. Das Antiserum gegen InlH kreuzreagierte mit InlA und auch schwach mit anderen Internalinen. In Zellwandpräparaten von L. monocytogenes dekorierte es ein ~50 kDa schweres Protein, welches mit InlH identisch sein könnte. Es fehlt in inlG/H/E Deletionsmutanten und wird in einer inlA/B Deletionsmutante stärker exprimiert. Im Kulturüberstand ist es etwas schwerer, wie man es von einem Protein mit LPXTG Motiv erwartet, das nicht von Sortase (Bierne et al., 2002; Garandeau et al., 2002) prozessiert wurde. In L. monocytogenes EGDe wird dieses ~50 kDa Protein um ein bis zwei dekadische Größenordungen stärker exprimiert als in L. monocytogenes EGD. Die Expression des Proteins war bei 30 und 37 °C gleich stark und wurde nicht durch PrfA reguliert. In Zellwandpräparaten von L. ivanovii ATCC 19119 dekorierten die Seren gegen InlA und InlH ein Protein das in seiner Größe dem InlA von L. monocytogenes entspricht. Mit Hexosaminidase Assays zur Untersuchung von Zelladhärenz (nach Landegren, 1984) an rekombinante His6-markierte Internaline konnte keine Interaktion der Internaline InlE, InlG oder InlH mit Oberflächenfaktoren von Caco-2, HeLa oder HepG2 Zellen nachgewiesen werden, während Positivkontrollen mit InlA und InlB weitestgehend erwartungsgemäß ausfielen. InlC besitzt jedoch offenbar einen bisher noch nicht genauer identifizierten Rezeptor auf der Zelloberfläche. An InlC und EGF adhärierten Caco-2 Zellen stark wachstumsphasenabhängig und etwa tausendfach schwächer als an InlA. Die beste Bindung erfolgte bei semikonfluent gewachsenen Zellen, die am Vortag ausgesät wurden. Unter diesen Bedingungen war auch die von Bergmann et al. beobachtete unterstützende Wirkung von InlC auf die InlA-abhängige Invasion am größten (Bergmann et al., 2002). In dieser Arbeit wurden außerdem die Promotoren von Internalingenen aus L. ivanovii, sowie weitere Virulenzgene (plcA, hly, actA) der Spezies L. monocytogenes, L. ivanovii und L. seeligeri mit Hilfe eines zellfreien in vitro Transkriptionssystems (Lalic-Mülthaler et al., 2001) untersucht, um deren PrfA-Abhängigkeit und Aktivität unabhängig von physiologischen Faktoren analysieren zu können, da die PrfA-Aktivität in vivo pleiotrop reguliert wird (Dickneite et al., 1998; Ermolaeva et al., 2004; Milenbachs et al., 1997; Milenbachs Lukowiak et al., 2004; Renzoni et al., 1997; Ripio et al., 1996). Dafür wurde in dieser Arbeit RNA-Polymerase aus L. monocytogenes &#916;prfA &#916;sigB (Stritzker et al., 2005) isoliert. Gleichzeitig wurde die Aktivität von rekombinanten His6-markierten PrfA Proteinen untersucht. Dazu wurden die PrfA Proteine von L. monocytogenes (m-PrfA und hyperaktives m-PrfA* (Ripio et al., 1997b)), L. ivanovii (i-PrfA) und L. seeligeri (s-PrfA), so wie ein Hybridprotein (sm-PrfA) aufgereinigt. Das Hybridprotein sm-PrfA entspricht s-PrfA bis auf die letzten 38 Aminosäurereste, die durch jene von m-PrfA ersetzt wurden. ...The genus Listeria comprises six known species of ubiquitous Gram-positive, non-sporulating, rod-shaped bacteria. Of these species Listeria monocytogenes and L. ivanovii are able to cause the clinical picture of listeriosis in humans and animals (Rocourt & Seeliger, 1985; Vázquez-Boland et al., 2001b; Weis & Seeliger, 1975) with L. ivanovii predominantly occurring in animals (Cummins et al., 1994; Hof & Hefner, 1988). L. monocytogenes is considered as important model of an intracellular pathogen that can also invade non-professional phagocytes with the aid of internalins (Gaillard et al., 1991; Lingnau et al., 1995) and can multiply and spread due to a set of virulence factors (Tilney & Portnoy, 1989). The two pathogenic species and the apathogenic L. seeligeri possess a pathogenicity island termed LIPI-1 (Gouin et al., 1994; Kreft et al., 2002). In L. monocytogenes internalin genes are partially clustered and mainly form a pathogenicity island termed LIPI-2 in L. ivanovii (Domínguez-Bernal et al., 2006; Dramsi et al., 1997; Gaillard et al., 1991; Raffelsbauer et al., 1998). The expression of many virulence genes is controlled by the central regulatory protein PrfA which gene prfA is part of LIPI-1 (Domínguez-Bernal et al., 2006; Leimeister-Wächter et al., 1990; Lingnau et al., 1995; Mengaud et al., 1991a). In the context of this work the internalins InlC, InlE, InlG and InlH of L. monocytogenes should be further investigated. Therefore recombinant His6-tagged internalins were purified and polyclonal antisera against the internalins A, B, E, G and H were raised. In addition the creation of two monoclonal antibodies against InlG succeeded. While the antibodies against InlG and InlE decorated well their recombinant antigens, they could not detect proteins in cell wall preparations or culture supernatant of L. monocytogenes EGD and EGDe. The antiserum against InlH cross-reacted with InlA and weakly also with other internalins. In cell wall preparations of L. monocytogenes it decorated a ~50 kDa protein which could be identical with InlH. This protein is missing in inlG/H/E deletion mutants and is stronger expressed in inlA/B deletion mutants. It is slightly bigger in the supernatant as expected for a protein with LPXTG motif that was not processed by sortase (Bierne et al., 2002; Garandeau et al., 2002). In L. monocytogenes EGDe the ~50 kDa protein was expressed stronger than in L. monocytogenes EGD by two orders of magnitude. The expression of this protein was equal at 30 and 37 °C and was not regulated by PrfA. In cell wall preparations of L. ivanovii ATCC 19119 the antisera against InlA and InlH decorated a protein matching the size of InlA of L. monocytogenes. Hexosaminidase assays for analysis of cell adherence (after Landegren, 1984) with recombinant His6-tagged internalins showed no interaction of the internalins InlE, InlG or InlH with surface factors of Caco-2, HeLa or HepG2 cells while positive controls with InlA and InlB mainly resulted as expected. However InlC has a not yet identified receptor on the eukaryotic cell surface. Caco-2 cells adhered to InlC and EGF in a strongly growth phase dependent manner and roughly thousand fold weaklier then to InlA. Best binding was observed with semi confluent grown cells which were prepared one day before the assay. Under these conditions the supportive effect of InlC in InlA-dependent invasion reported by Bergmann et al. was also maximal (Bergmann et al., 2002). Furthermore in this work the promoters of internalin genes from L. ivanovii and other virulence genes (plcA, hly, actA) from the species L. monocytogenes, L. ivanovii and L. seeligeri were investigated with the aid of the cell free in vitro transcription assay (Lalic-Mülthaler et al., 2001) to analyze their PrfA-dependency and activity independent of metabolic factors because PrfA activity is pleiotropicly regulated in vivo (Dickneite et al., 1998; Ermolaeva et al., 2004; Milenbachs et al., 1997; Milenbachs Lukowiak et al., 2004; Renzoni et al., 1997; Ripio et al., 1996). Therefore RNA polymerase from L. monocytogenes &#916;prfA &#916;sigB (Stritzker et al., 2005) was isolated in this work. Simultaneously the activity of recombinant His6-tagged PrfA proteins was investigated. For this purpose PrfA proteins of L. monocytogenes (m-PrfA and hyperactive m-PrfA* (Ripio et al., 1997b)), L. ivanovii (i-PrfA), L. seeligeri (s-PrfA) and the hybrid protein (sm-PrfA) were purified. The hybrid protein sm-PrfA corresponds to s-PrfA except for the last 38 amino acid residues which were substituted by those of m-PrfA. ..

    Response Regulator DegU of Listeria monocytogenes Controls Temperature-Responsive Flagellar Gene Expression in Its Unphosphorylated Stateâ–ż

    No full text
    We demonstrate that in Listeria monocytogenes, temperature-responsive transcriptional control of flagellar genes does not rely on the phosphorylation of the conserved phosphorylation site (D55) in the receiver domain of response regulator DegU. Furthermore, proper control of DegU-regulated genes involved in ethanol tolerance and virulence is independent of receiver phosphorylation

    The Travelling Particles: Investigating microplastics as possible transport vectors for multidrug resistant E. coli in the Weser estuary (Germany)

    No full text
    The prevalence of multidrug-resistant Gram-negative bacteria in aquatic environments has been a long withstanding health concern, namely extended-spectrumbeta-lactamase (ESBL) producing Escherichia coli. Given increasing reports on microplastic (MP) pollution in these environments, it has become crucial to better understand the role of MP particles as transport vectors for such multidrug-resistant bacteria. In this study, an incubation experiment was designed where particles of both synthetic and natural material (HDPE, tyre wear, and wood) were sequentially incubated atmultiple sites along a salinity gradient from the Lower Weser estuary (Germany) to the offshore island Helgoland (German Bight, North Sea). Following each incubation period, particle biofilms andwater samples were assessed for ESBL-producing E. coli, first by the enrichment and detection of E. coli using Fluorocult® LMX Broth followed by cultivation on CHROMAgar™ ESBL media to select for ESBLproducers. Results showed that general E. coli populations were present on the surfaces of wood particles across all sites but nonewere found to produce ESBLs. Additionally, neither HDPE nor tyrewear particles were found to harbour any E. coli. Conversely, ESBL-producing E. coli were present in surrounding waters from all sites, 64% of which conferred resistances against up to 3 other antibiotic groups, additional to the beta-lactam resistances intrinsic to ESBL-producers. This study provides a first look into the potential of MP to harbour and transport multidrug-resistant E. coli across different environments and the approach serves as an important precursor to further studies on other potentially harmful MP-colonizing species

    Species-Specific Differences in the Activity of PrfA, the Key Regulator of Listerial Virulence Genes

    No full text
    PrfA, the master regulator of LIPI-1, is indispensable for the pathogenesis of the human pathogen Listeria monocytogenes and the animal pathogen Listeria ivanovii. PrfA is also present in the apathogenic species Listeria seeligeri, and in this study, we elucidate the differences between PrfA proteins from the pathogenic and apathogenic species of the genus Listeria. PrfA proteins of L. monocytogenes (PrfA(Lm) and PrfA*(Lm)), L. ivanovii (PrfA(Li)), and L. seeligeri (PrfA(Ls)) were purified, and their equilibrium constants for binding to the PrfA box of the hly promoter (Phly(Lm)) were determined by surface plasmon resonance. In addition, the capacities of these PrfA proteins to bind to the PrfA-dependent promoters Phly and PactA and to form ternary complexes together with RNA polymerase were analyzed in electrophoretic mobility shift assays, and their abilities to initiate transcription in vitro starting at these promoters were compared. The results show that PrfA(Li) resembled the constitutively active mutant PrfA*(Lm) more than the wild-type PrfA(Lm), whereas PrfA(Ls) showed a drastically reduced capacity to bind to the PrfA-dependent promoters Phly and PactA. In contrast, the efficiencies of PrfA(Lm), PrfA*(Lm), and PrfA(Li) forming ternary complexes and initiating transcription at Phly and PactA were rather similar, while those of PrfA(Ls) were also much lower. The low binding and transcriptional activation capacities of PrfA(Ls) seem to be in part due to amino acid exchanges in its C-terminal domain (compared to PrfA(Lm) and PrfA(Li)). In contrast to the significant differences in the biochemical properties of PrfA(Lm), PrfA(Li), and PrfA(Ls), the PrfA-dependent promoters of hly (Phly(Lm), Phly(L)(i), and Phly(L)(s)) and actA (PactA(Lm), PactA(L)(i), and PactA(L)(s)) of the three Listeria species did not significantly differ in their binding affinities to the various PrfA proteins and in their strengths to promote transcription in vitro. The allelic replacement of prfA(Lm) with prfA(Ls) in L. monocytogenes leads to low expression of PrfA-dependent genes and to reduced in vivo virulence of L. monocytogenes, suggesting that the altered properties of PrfA(Ls) protein are a major cause for the low virulence of L. seeligeri

    Table_1_Rapid typing of Klebsiella pneumoniae and Pseudomonas aeruginosa by Fourier-transform Infrared spectroscopy informs infection control in veterinary settings.XLSX

    No full text
    IntroductionThe emergence of multi-drug resistant (MDR) pathogens linked to healthcare-associated infections (HCAIs) is an increasing concern in modern veterinary practice. Thus, rapid bacterial typing for real-time tracking of MDR hospital dissemination is still much needed to inform best infection control practices in a clinically relevant timeframe. To this end, the IR Biotyper using Fourier-Transform InfraRed (FTIR) spectroscopy has the potential to provide fast cluster analysis of potentially related organisms with substantial cost and turnaround time benefits.Materials and methodsA collection of MDR bacterial isolates (n = 199, comprising 92 Klebsiella pneumoniae and 107 Pseudomonas aeruginosa) obtained from companion animal (i.e., dogs, cats and horses) clinical investigations, faecal and environmental screening from four veterinary facilities between 2012 and 2019 was analysed retrospectively by FTIR spectroscopy. Its performance was compared against MLST extracted from whole genomes of a subset of clustering isolates (proportionally to cluster size) for investigation of potential nosocomial transmission between patients and the surrounding hospital environments.ResultsConcordance between the FTIR and MLST types was overall high for K. pneumoniae (Adjusted Rand Index [ARI] of 0.958) and poor for P. aeruginosa (ARI of 0.313). FTIR K. pneumoniae clusters (n = 7) accurately segregated into their respective veterinary facility with evidence of intra-hospital spread of K. pneumoniae between patients and environmental surfaces. Notably, K. pneumoniae ST147 intensely circulated at one Small Animal Hospital ICU. Conversely, Pseudomonas aeruginosa FTIR clusters (n = 18) commonly contained isolates of diversified hospital source and heterogeneous genetic background (as also genetically related isolates spread across different clusters); nonetheless, dissemination of some clones, such as P. aeruginosa ST2644 in the equine hospital, was apparent. Importantly, FTIR clustering of clinical, colonisation and/or environmental isolates sharing genomically similar backgrounds was seen for both MDR organisms, highlighting likely cross-contamination events that led to clonal dissemination within settings.ConclusionFTIR spectroscopy has high discriminatory power for hospital epidemiological surveillance of veterinary K. pneumoniae and could provide sufficient information to support early detection of clonal dissemination, facilitating implementation of appropriate infection control measures. Further work and careful optimisation need to be carried out to improve its performance for typing of P. aeruginosa veterinary isolates.</p
    corecore