261 research outputs found

    Towards a consistent eddy-covariance processing: An intercomparison of EddyPro and TK3

    Get PDF
    A comparison of two popular eddy-covariance software packages is presented, namely, EddyPro and TK3. Two approximately 1-month long test data sets were processed, representing typical instrumental setups (i.e., CSAT3/LI-7500 above grassland and Solent R3/LI-6262 above a forest). The resulting fluxes and quality flags were compared. Achieving a satisfying agreement and understanding residual discrepancies required several iterations and interventions of different nature, spanning from simple software reconfiguration to actual code manipulations. In this paper, we document our comparison exercise and show that the two software packages can provide utterly satisfying agreement when properly configured. Our main aim, however, is to stress the complexity of performing a rigorous comparison of eddy-covariance software. We show that discriminating actual discrepancies in the results from inconsistencies in the software configuration requires deep knowledge of both software packages and of the eddy-covariance method. In some instances, it may be even beyond the possibility of the investigator who does not have access to and full knowledge of the source code. Being the developers of EddyPro and TK3, we could discuss the comparison at all levels of details and this proved necessary to achieve a full understanding. As a result, we suggest that researchers are more likely to get comparable results when using EddyPro (v5.1.1) and TK3 (v3.11) – at least with the setting presented in this paper – than they are when using any other pair of EC software which did not undergo a similar cross-validation. As a further consequence, we also suggest that, to the aim of assuring consistency and comparability of centralized flux databases, and for a confident use of eddy fluxes in synthesis studies on the regional, continental and global scale, researchers only rely on software that have been extensively validated in documented intercomparisons

    Theoretical considerations on the energy balance closure

    Get PDF

    How Does the Choice of the Lower Boundary Conditions in Large-Eddy Simulations Affect the Development of Dispersive Fluxes Near the Surface?

    Get PDF
    Large-eddy simulations (LES) are an important tool for investigating the longstanding energy-balance-closure problem, as they provide continuous, spatially-distributed information about turbulent flow at a high temporal resolution. Former LES studies reproduced an energy-balance gap similar to the observations in the field typically amounting to 10–30% for heights on the order of 100 m in convective boundary layers even above homogeneous surfaces. The underestimation is caused by dispersive fluxes associated with large-scale turbulent organized structures that are not captured by single-tower measurements. However, the gap typically vanishes near the surface, i.e. at typical eddy-covariance measurement heights below 20 m, contrary to the findings from field measurements. In this study, we aim to find a LES set-up that can represent the correct magnitude of the energy-balance gap close to the surface. Therefore, we use a nested two-way coupled LES, with a fine grid that allows us to resolve fluxes and atmospheric structures at typical eddy-covariance measurement heights of 20 m. Under different stability regimes we compare three different options for lower boundary conditions featuring grassland and forest surfaces, i.e. (1) prescribed surface fluxes, (2) a land-surface model, and (3) a land-surface model in combination with a resolved canopy. We show that the use of prescribed surface fluxes and a land-surface model yields similar dispersive heat fluxes that are very small near the vegetation top for both grassland and forest surfaces. However, with the resolved forest canopy, dispersive heat fluxes are clearly larger, which we explain by a clear impact of the resolved canopy on the relationship between variance and flux–variance similarity functions

    Memristive operation mode of a site-controlled quantum dot floating gate transistor

    Get PDF
    The authors gratefully acknowledge financial support from the European Union (FPVII (2007-2013) under Grant Agreement No. 318287 Landauer) as well as the state of Bavaria.We have realized a floating gate transistor based on a GaAs/AlGaAs heterostructure with site-controlled InAs quantum dots. By short-circuiting the source contact with the lateral gates and performing closed voltage sweep cycles, we observe a memristive operation mode with pinched hysteresis loops and two clearly distinguishable conductive states. The conductance depends on the quantum dot charge which can be altered in a controllable manner by the voltage value and time interval spent in the charging region. The quantum dot memristor has the potential to realize artificial synapses in a state-of-the-art opto-electronic semiconductor platform by charge localization and Coulomb coupling.Publisher PDFPeer reviewe
    • …
    corecore