1,000 research outputs found

    PYIN: A FUNDAMENTAL FREQUENCY ESTIMATOR USING PROBABILISTIC THRESHOLD DISTRIBUTIONS

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Sequential Complexity as a Descriptor for Musical Similarity

    Get PDF
    We propose string compressibility as a descriptor of temporal structure in audio, for the purpose of determining musical similarity. Our descriptors are based on computing track-wise compression rates of quantised audio features, using multiple temporal resolutions and quantisation granularities. To verify that our descriptors capture musically relevant information, we incorporate our descriptors into similarity rating prediction and song year prediction tasks. We base our evaluation on a dataset of 15500 track excerpts of Western popular music, for which we obtain 7800 web-sourced pairwise similarity ratings. To assess the agreement among similarity ratings, we perform an evaluation under controlled conditions, obtaining a rank correlation of 0.33 between intersected sets of ratings. Combined with bag-of-features descriptors, we obtain performance gains of 31.1% and 10.9% for similarity rating prediction and song year prediction. For both tasks, analysis of selected descriptors reveals that representing features at multiple time scales benefits prediction accuracy.Comment: 13 pages, 9 figures, 8 tables. Accepted versio

    A COMPARISON OF EXTENDED SOURCE-FILTER MODELS FOR MUSICAL SIGNAL RECONSTRUCTION

    Get PDF
    China Scholarship Council (CSC)/ Queen Mary Joint PhD scholarship; Royal Academy of Engineering Research Fellowshi

    The Audio Degradation Toolbox and its Application to Robustness Evaluation

    Get PDF
    We introduce the Audio Degradation Toolbox (ADT) for the controlled degradation of audio signals, and propose its usage as a means of evaluating and comparing the robustness of audio processing algorithms. Music recordings encountered in practical applications are subject to varied, sometimes unpredictable degradation. For example, audio is degraded by low-quality microphones, noisy recording environments, MP3 compression, dynamic compression in broadcasting or vinyl decay. In spite of this, no standard software for the degradation of audio exists, and music processing methods are usually evaluated against clean data. The ADT fills this gap by providing Matlab scripts that emulate a wide range of degradation types. We describe 14 degradation units, and how they can be chained to create more complex, `real-world' degradations. The ADT also provides functionality to adjust existing ground-truth, correcting for temporal distortions introduced by degradation. Using four different music informatics tasks, we show that performance strongly depends on the combination of method and degradation applied. We demonstrate that specific degradations can reduce or even reverse the performance difference between two competing methods. ADT source code, sounds, impulse responses and definitions are freely available for download

    High precision frequency estimation for harpsichord tuning classification

    Get PDF
    We present a novel music signal processing task of classifying the tuning of a harpsichord from audio recordings of standard musical works. We report the results of a classification experiment involving six different temperaments, using real harpsichord recordings as well as synthesised audio data. We introduce the concept of conservative transcription, and show that existing high-precision pitch estimation techniques are sufficient for our task if combined with conservative transcription. In particular, using the CQIFFT algorithm with conservative transcription and removal of short duration notes, we are able to distinguish between 6 different temperaments of harpsichord recordings with 96% accuracy (100% for synthetic data)

    Computer-aided Melody Note Transcription Using the Tony Software: Accuracy and Efficiency

    Get PDF
    accepteddate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfdate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfWe present Tony, a software tool for the interactive an- notation of melodies from monophonic audio recordings, and evaluate its usability and the accuracy of its note extraction method. The scientific study of acoustic performances of melodies, whether sung or played, requires the accurate transcription of notes and pitches. To achieve the desired transcription accuracy for a particular application, researchers manually correct results obtained by automatic methods. Tony is an interactive tool directly aimed at making this correction task efficient. It provides (a) state-of-the art algorithms for pitch and note estimation, (b) visual and auditory feedback for easy error-spotting, (c) an intelligent graphical user interface through which the user can rapidly correct estimation errors, (d) extensive export functions enabling further processing in other applications. We show that Tony’s built in automatic note transcription method compares favourably with existing tools. We report how long it takes to annotate recordings on a set of 96 solo vocal recordings and study the effect of piece, the number of edits made and the annotator’s increasing mastery of the software. Tony is Open Source software, with source code and compiled binaries for Windows, Mac OS X and Linux available from https://code.soundsoftware.ac.uk/projects/tony/

    Electrocardiographic and haemodynamic alterations caused by three different test solutions of local anaesthetics to detect accidental intravascular injection in children

    Get PDF
    Background The aim of this study was to investigate ECG and haemodynamic alterations provoked by a test dose of bupivacaine, epinephrine, and their combination. Methods Paediatric patients undergoing general anaesthesia were randomized into three groups. After anaesthesia induction and tracheal intubation, 0.2 ml kg−1 (max. 3 ml) of the corresponding test solution was i.v. injected: bupivacaine 0.125% (Group B), bupivacaine 0.125% plus epinephrine 1:200 000 (Group BE), or epinephrine 1:200 000 (Group E). ECG was printed and analysed post hoc. Non-invasive arterial pressure (AP) was measured at 1 and 2 min after test dose injection. Increases in T-wave of ≥25%, in heart rate (HR) of ≥10 beats min−1, and in systolic AP of ≥15 mm Hg above baseline value were considered a positive result. Results A total of 105 children aged 0.2-16 (median 6.8) yr were enrolled. Test dose injection provoked T-wave elevation in 0%, 85%, and 89% of patients in Groups B, BE, and E, respectively. A positive increase in HR was found in 0%, 68%, and 76%. A positive increase in AP at 1 min was found in 0%, 88%, and 94% and at 2 min in 0%, 42%, and 59%. A decrease in HR of ≥10 beats min−1 was observed in 6%, 76%, and 69%. Alterations in T-wave and HR were significantly influenced by age. Conclusions ECG and haemodynamic alterations after i.v. injection of a local anaesthetic test dose were significantly influenced by epinephrine. T-wave elevation, increase in AP, and changes in HR are highly reliable variables, particularly when age is taken into accoun
    corecore