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HIGH PRECISION FREQUENCY ESTIMATION FOR HARPSICHORD TUNING
CLASSIFICATION

Dan Tidhar, Matthias Mauch and Simon Dixon

Queen Mary University of London
Centre for Digital Music

ABSTRACT

We present a novel music signal processing task of classifying the

tuning of a harpsichord from audio recordings of standard musical

works. We report the results of a classification experiment involving

six different temperaments, using real harpsichord recordings as well

as synthesised audio data. We introduce the concept of conservative

transcription, and show that existing high-precision pitch estimation

techniques are sufficient for our task if combined with conservative

transcription. In particular, using the CQIFFT algorithm with con-

servative transcription and removal of short duration notes, we are

able to distinguish between 6 different temperaments of harpsichord

recordings with 96% accuracy (100% for synthetic data).

Index Terms— Music, Pitch Estimation, Temperament

1. INTRODUCTION

Tuning of musical instruments has occupied musical and scientific

minds at least since the days of Pythagoras of Samos. Musical con-

sonance (combinations of notes that “sound good” together) is de-

rived from the sharing of partial frequencies. As musical instruments

produce harmonic tones (all partials are integer multiples of some

fundamental frequency), the condition for consonance of two notes

is that their fundamental frequencies are in a simple integer ratio.

For example, if the ratio of frequencies fa and fb is p : q, then ev-

ery pth partial of fb is equal in frequency to each qth partial of fa.

Based on this observation, it is desirable to build musical scales out

of such consonant integer ratio intervals. However, it turns out to be

impossible to build a scale in which all intervals are maximally con-

sonant. Some compromise must be made, and the way in which this

compromise takes place defines the temperament, or tuning system,

being used.

Attempting to build a system to classify musical recordings by

temperament presents particular signal processing challenges. First,

the differences between temperaments are small, of the order of a

few cents, where a cent is one hundredth of a semitone, or one

twelve-hundredth of an octave. For example, if A = 415 Hz is used as

the reference pitch, then middle C might have a frequency of 246.76,

247.46, 247.60, 247.93, 248.23 or 248.99 Hz, based on the six rep-

resentative temperaments we examine in this work. To resolve these

frequencies in a spectrum, a window of several seconds duration

would be required, but this introduces other problems, since musical

notes are not stationary and generally do not last this long.

The second problem is that in musical recordings, notes rarely

occur in isolation. There are almost always multiple notes sounding
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simultaneously, and this has the potential to bias any frequency es-

timates. To make matters worse, the intervals which are favoured in

music are those where the partials coincide. The third main prob-

lem is that we do not know when each note is played, so that when

we detect a sinusoid, we can not be sure whether this is a funda-

mental frequency or a partial of another fundamental. The ability

to distinguish between these cases is crucial to successful tempera-

ment classification. For example, if an A at 110 Hz is played, the

signal will also have a peak at 330 Hz, which is the fundamental fre-

quency of an E. In many temperaments however, the actual note E

will have a frequency different from 330 Hz (e.g. 329.6 Hz in equal

temperament), so the estimation of that note would be biased.

Besides posing a non-trivial research challenge, there are many

ways in which temperament estimation can be useful to musicians,

musicologists, and listeners. Such a classifier is necessary for music

retrieval according to temperament, which would be useful for edu-

cational purposes, such as ear training, for professional users such as

keyboard tuners and performers, by providing them feedback about

tuning accuracy and stability, as well as helping to classify creative

temperaments (i.e. those done without strictly adhering to known

recipes) and determine some of their properties. Furthermore, musi-

cologists are likely to find temperament estimators very useful when

studying performance practice from recordings.

1.1. Temperament

Temperament is covered thoroughly elsewhere [1, 2], but we shall

provide a brief formulation of the problem here. Consider 12 fifth

steps (a fifth is 7 semitones; a pure or consonant fifth has a frequency

ratio of 3/2) and 7 octave steps (frequency ratio 2/1). On a keyboard

instrument both of these sequences of intervals lead to the same key,

despite the fact that (3/2)12 > 27. The ratio between the two sides

of this inequality is referred to as “the comma”, or more precisely,

the Pythagorean comma. One way of defining particular tempera-

ments is according to the distribution of the comma1 along the cir-

cle of fifths. Equal temperament, for example, can be defined as

such where each fifth on the circle is diminished by exactly the same

amount, i.e. 1/12 of a (Pythagorean) comma.

The six temperaments used in this work are equal temperament,

Valotti, fifth-comma (Fifth), quarter-comma meantone (QCMT),

sixth-comma meantone (SCMT), and just intonation. In a Valotti

temperament, 6 of the fifths are diminished by a 1/6 comma each,

and the other 6 fifths are left pure. In the fifth-comma temperament

we use, five of the fifths are diminished by a 1/5 comma each, and

the remaining 7 are pure. In a quarter-comma meantone tempera-

ment, 11 of the fifths are shrunk by 1/4 of a comma, and the one

1For simplicity, we omit discussion of the Syntonic comma, treating it is
the same as the Pythagorean.



Note Valotti Fifth QCMT SCMT Just

C 5.9 8.2 10.3 4.9 15.6

C# 0 -1.6 -13.7 13 -13.7

D 2 2.7 3.4 1.6 -2

D# 3.9 2.3 20.6 9.8 -9.8

E -1.9 1.9 -3.4 -1.6 2

F 7.8 6.3 13.7 6.5 13.7

F# -1.9 -3.5 10.3 -4.9 15.6

G 3.9 5.5 6.8 3.3 17.6

G# 1.9 0.4 -17.1 11.4 -11.7

A 0 0 0 0 0

Bb 5.9 4.3 17.1 8.1 11.7

B -3.9 -0.8 -6.8 -3.3 3.9

Table 1. Deviations (in cents) from equal temperament for the five

unequal target temperaments in our experiment.

remaining fifth is 7/4 of a comma larger than pure. In sixth-comma

meantone, 11 fifths are shrunk by 1/6 of a comma, and the one

remaining fifth is 7/6 comma larger than pure. The just-intonation

temperament we used is based on the reference tone A, and all other

tones are calculated as integer ratios corresponding to harmonics of

the reference tone. The ratios we used are given by the following

vector, representing twelve chromatic tones above the reference A:

(16/15, 9/8, 6/5, 5/4, 4/3, 45/32, 3/2, 8/5, 5/3, 9/5, 15/8, 2/1)

The deviations (in cents) from equal temperament of the five other

temperaments we use, are given in Table 1.

Apart from being relatively common, this set of six tempera-

ments represents different categories: well temperaments are those

which enable usage of all keys (though not necessarily equally well),

and regular temperaments are those with at least 11 fifths of equal

size. Equal temperament is both well and regular, just intonation is

neither well nor regular, Valotti and fifth-comma are well and irregu-

lar, and the two variants of meantone (quarter and sixth comma) are

regular but not well.

1.2. Experiment outline

We set the task of distinguishing between the six different commonly-

used temperaments mentioned above: equal temperament, Valotti,

fifth comma, quarter-comma meantone, sixth-comma meantone,

and just intonation. The framework of our classification task can be

summarised as follows: given an audio recording of an unknown

musical piece, we assume the instrument is tuned according to one

of the temperaments mentioned above, and that we know the ap-

proximate standard tuning (A=440 Hz, A=415 Hz, etc.), but we

allow for minor deviations from this nominal tuning frequency or

from the temperament.

Obtaining ground-truth data for a temperament-recognition ex-

periment proved to be non-trivial for several reasons. Most of the

commercially available recordings do not specify the harpsichord

temperament. Even those that do might not be completely reliable

because of a possible discrepancy between tuning as a practical mat-

ter and tuning as a theoretical construct. In practice, the tuner’s

main concern is to facilitate playing, and time limitations very of-

ten compromise precision. We therefore chose to produce our initial

dataset ourselves. The dataset consists of real harpsichord record-

ings played by Dan Tidhar on a Rubio double-manual harpsichord

in a small hall and of synthesised recordings rendered from MIDI

using a physically-modelled harpsichord sound on Pianoteq [3]. For

each temperament and rendering alternative (real vs synthesised),

we recorded 4 different tracks (i.e. a total of 48) consisting of a

slow ascending chromatic scale, J. S. Bach’s first prelude in C Ma-

jor from the Well-tempered Clavier, F. Couperin’s La Ménetou, and

J. S. Bach’s Variation 21 from Goldberg Variations. The choice of

tracks encompasses various degrees of polyphony, various degrees

of chromaticism, as well as various speeds. All tracks were tuned to

a reference frequency of approximately A=415Hz.

2. METHOD

In order to obtain accurate pitch estimates of unknown notes in the

presence of multiple simultaneous tones, we developed a 2-stage ap-

proach: conservative (i.e. high precision, low recall2) transcription,

which identifies the subset of notes which are easily detected, fol-

lowed by an accurate frequency domain pitch estimation step for the

notes determined in the first stage.

2.1. Conservative Transcription (CT)

The ideal solution for estimating the fundamental frequencies of

each of the notes played in a piece would require a transcription

step to identify the existance and timing of each note. However, no

reliable automatic transcription algorithm exists, so we introduce the

concept of conservative transcription, which identifies only those si-

nusoids that we are confident correspond to fundamental frequencies

and omits any unsure candidates. We take advantage of the fact that

we do not need to estimate the pitch of each and every performed

note, since the tuning of the harpsichord is assumed not to change

during a piece.

CT consists of three main parts: computation of framewise am-

plitude spectra with a standard STFT; sinusoid detection through

peak-picking, which yields first frequency estimates; and finally the

deletion of sinusoids that have a low confidence, either because they

are below an amplitude or duration threshold, or because they could

be overtones of a different sinusoid. We describe the deletion of can-

didate sinusoids as “conservative” since not only overtone sinusoids,

but also other sinusoids that correspond to fundamental frequencies

could be deleted in this step.

The sinusoid detection is a simple spectrum-based method.

From the time-domain signal, downsampled to fs = 11025 Hz, we

compute the STFT using a Hamming window, a frame length of

4096 samples (370 ms), a hop size of 256 samples (23 ms, i.e. 15/16

overlap), and a zero padding factor of 2.

In order to remove harmonics of sinusoids in the amplitude spec-

trum |X(n, i)|, one has to first identify the sinusoids. We use two

adaptive thresholding techniques to find peak regions. To find lo-

cally significant bins of frame n, we calculate the running weighted

mean µ(n, i) and the running weighted standard deviation σ(n, i)
of |X(n, i)| using a window of length 200 bins. If a spectral bin

|X(n, i)| exceeds the running mean plus half a running standard de-

viation we consider it a locally salient bin:

|X(n, i)| > µ(n, i) + 0.5 · σ(n, i) (1)

To eliminate noise peaks at low amplitudes we consider as globally

salient only those bins which have an amplitude within 25dB below

that of the global maximum frame amplitude:

|X(n, i)| > 10−2.5 · max
j,k

{|X(j, k)|} (2)

2Precision is the fraction of transcribed notes that are correct; recall is the
fraction of played notes that are transcribed.



Fig. 1. The opening of Bach’s Prelude in C Major, shown in piano-

roll notation (log frequency vs time). The performed notes are shown

in light grey with the darker notes from the Conservative Transcrip-

tion superimposed over them.

We will consider only those bins that are both locally and globally

salient, i.e. both inequalities (1) and (2) hold. From each region

of consecutive peaks we pick the bin that has the maximum ampli-

tude and estimate the true frequency by quadratic interpolation of

the magnitude of the peak bin and its two surrounding bins [4]. This

frequency estimate (denoted QIFFT) is used as the baseline pitch

estimate in Section 4.

The next step is the “conservative” processing, in which we

delete many potential fundamental frequencies. For each peak fre-

quency f0, any other peak whose frequency is within 50 cents of a

multiple of f0 is deleted. In addition, peaks in the same frequency

bins in a neighbourhood of ±2 frames are deleted. For testing the

efficacy of this approach, we compare it with an otherwise identical

method which treats all spectral peaks as if they were fundamentals

(method SP in Table 2).

In order to sort the remaining frequency estimates into semitone

bins we determine the standard pitch fst by taking the median dif-

ference (in cents) of those peaks that are within half a semitone of

the nominal standard pitch (415 Hz). Based on the new standard

pitch fst each peak frequency is assigned to one of 60 pitches rang-

ing from MIDI note 21 to 80. Any frequency peaks outside of this

range are deleted.

In order to discard spurious data we delete any peaks which lack

continuity in time, i.e. where the continuous duration of the peak is

less than a threshold T . Results for various values of T are given

in Section 4. Remaining consecutive peaks are grouped as notes,

specified by onset time, duration, and MIDI pitch number. Figure

1 depicts an extract of a conservative transcription compared to the

underlying performed notes.

2.2. Pitch Estimation

Time-domain pitch estimation methods such as ACF and YIN are

unsuitable due to the bias caused by the presence of multiple simul-

taneous tones. Thus we focus on three frequency domain techniques:

the quadratic interpolated FFT (QIFFT) [4], the QIFFT with correc-

tion for the bias of the window function (CQIFFT) [5], and the in-

stantaneous frequency calculated with the phase vocoder (PV) [6].

More advanced estimation algorithms which admit frequency and/or

amplitude modulation were deemed unnecessary.

For each method, a pitch estimate is generated for each note ob-

ject given by the conservative transcription. Our baseline pitch es-

timation, denoted QIFFT, is the frequency estimated in the CT step

described above in subsection 2.1. The QIFFT estimate of the fun-

damental frequency is computed for each frame in the note, and the

mean is returned as the pitch of the note.

Our implementation of the CQIFFT method uses different

parameter values to the previous method: no downsampling, a

Blackman-Harris window with support size of 4096 samples, zero

padding factor of 4, and hop size of 1024 samples. After quadratic

interpolation, a bias correction is applied based on the window shape

and zero padding factor [5, equations 1 and 3]. For each note, the

frequency of the first 12 partials f1, ..., f12 is estimated as the me-

dian of the CQIFFT values. The final pitch estimate is described

below in subsection 2.3.

The third pitch estimation method (PV) uses the same param-

eters as CQIFFT, but estimates frequency using the instantaneous

frequency [6], which is calculated from the rate of change of phase

between frames in the relevant frequency bin. The frequency esti-

mates for each of the first 12 partials are computed with the median.

2.3. Integration of Partials

An ideal vibrating string has spectral energy at a fundamental fre-

quency and at integer multiples of that frequency. String instruments

such as the harpsichord emit approximately harmonic notes, where

the inharmonicity is primarily due to the stiffness of the string and

results in the frequency being slightly greater than the ideal integer

multiple of the fundamental [7]:

fk = kf0

p

1 + Bk2 (3)

where fk is the frequency of the kth partial, and B is a constant re-

lated to the physical properties of the string. If the inharmonicity

is “nearly negligible” [7, p. 343], the partial frequencies can pro-

vide independent estimates f̂(k) of the fundamental, by dividing the

frequency by the partial number:

f̂(k) =
fk

k
(4)

Välimäki et al. [8] claim that the inharmonicity of harpsichord

strings is not negligible, particularly for the lower pitches, citing

measured values of B between 10−5 and 10−4.

We compare two methods of integrating the frequency estimates

of the partials. First, assuming the inharmonicity is negligible, we

take the median of the estimates f̂(k) for k = 1, ..., 12 (referred

to as method M in Section 4). The second method fits a line to

f̂(k) using least squares. To remove the impact of outliers, the point

furthest from this line is deleted and a line fitted to the remaining

points. This outlier removal is iterated 3 times, leaving a line fitting

the best 9 partial estimates. The final pitch estimate is the value of

the line at i = 1 (denoted method L in Section 4).

3. CLASSIFICATION

We classify the 48 pieces by the temperament from which they differ

least in terms of the theoretical profiles shown in Table 1. The algo-

rithms introduced in Section 2 output a list of frequency estimates

for note objects described by a MIDI note number, onset time and

duration di. By ignoring the octave, the MIDI note number can be

converted to a pitch class pi ∈ P = {C, C#, D, . . . , B}. We then

convert the corresponding frequency estimates to cents deviation ci

from equal temperament. For the pitch class k the estimate ĉk of

the deviation in cents is obtained by taking the weighted mean of the

deviations over all the notes belonging to that pitch class,

ĉk =
X

i:pi=k

cidi

,

X

i:pi=k

di , k ∈ P (5)



Minimum note length: 0.1 0.3 0.5 0.7

Overtone removal: SP CT SP CT SP CT SP CT

QIFFT 21 20 21 23 21 24 21 24

CQIFFT-M 19 20 21 23 21 24 21 24

PT CQIFFT-L 20 18 21 24 20 24 20 24

PV-M 11 18 11 21 11 22 12 22

PV-L 19 17 19 23 22 24 22 24

QIFFT 17 18 17 20 18 20 17 20

CQIFFT-M 19 20 19 22 19 23 19 23

RH CQIFFT-L 17 22 17 22 17 22 16 22

PV-M 11 16 10 16 10 17 10 18

PV-L 18 20 20 20 20 21 20 21

Table 2. Number of pieces classified correctly (out of 24) using

various algorithms and data (see text for explanation).

Given this estimate ĉ = (ĉ1, . . . , ĉ12) and a temperament profile

c0 = (c0

1, . . . , c
0

12), we calculate the divergence

d(ĉ, c0) =
X

k∈P

wi(ĉk − c0

k − r)2 (6)

between estimate and profile, where wk is the squared relative dura-

tion of the kth pitch class in the note list. r =
P

wk(ĉi−c0

i )/
P

wk

is the offset in cents which minimises the divergence and thus com-

pensates for small deviations from 415 Hz tuning. The weight wi

favours pitch classes that have longer cumulative durations, and in

particular discards pitch classes that are not in the note list. A piece

is classified as having the temperament whose profile c0 differs least

from it in terms of d(ĉ, c0).

4. RESULTS

The classification results for the two sets of 24 pieces (4 pieces in

each of 6 temperaments) are shown in Table 2. Five factors were

varied: the source of data, whether synthesised data from Pianoteq

(PT) or real harpsichord (RH) recordings; the pitch estimation algo-

rithm (QIFFT, CQIFFT or PV); the method of combining frequency

estimates of partials, whether median (M) or line-fitting with out-

lier removal (L); the minimum note length from the first-pass note

identification (0.1 – 0.7 seconds); and style of first-pass note iden-

tification, whether spectral peaks (SP) or conservative transcription

(CT). See Section 2 for more details.

Our observations on the results follow. Although results were

better for synthetic data (all correct with several algorithms and com-

binations of parameters), it was also possible to classify all but one of

the real recordings correctly, using CQIFFT-M. The choice of pitch

estimation algorithm was inconclusive for synthetic data, with per-

fect results achieved by each algorithm for some parameter settings.

For the RH data, CQIFFT performed best of all the methods (23 out

of 24 correct). For estimating the fundamental from a set of par-

tials, the CQIFFT approach worked better with the median of the

frequency to partial number ratio (method M), while PV performed

better with line-fitting (method L). Short-note deletion played an im-

portant role, giving a clear improvement in results for values up to

0.5 seconds. The improvement was greater when using conservative

transcription and/or synthetic data. Finally, the use of conservative

transcription improved performance of all algorithms, and was es-

sential for obtaining accurate temperament estimates.

5. FUTURE WORK AND CONCLUSION

Various avenues for future work lie open. First, more extensive

testing could be performed, using a larger set of temperaments. This

might require a more sophisticated inference mechanism, which

could include knowledge of relationships between temperaments,

enabling partial classification (temperament family) in cases where

data is insufficient to determine temperament uniquely. In order to

embed the inference in the Semantic Web, we are developing an on-

tology of temperaments as part of the Music Ontology [9]. Second,

since scores are available for most harpsichord music, an alternative

approach would be to align the score to the recordings, which is

likely to give a more accurate transcription of the notes, leading to

more robust results. Third, more accurate pitch estimates could be

obtained by estimating the inharmonicity coefficient B for each note

and fitting the partials to equation 3. Fourth, statistical analysis of

the data would allow us to evaluate the reliability of pitch estimates,

which could then be used as weights in the classification step. Fi-

nally, we intend to explore other uses for conservative transcription,

such as seeding for general polyphonic transcription, source separa-

tion and instrument identification. We believe this “precision over

recall” philosophy has applicability beyond the present study.

We presented algorithms for estimating the temperament from

harpsichord recordings, and reported the results of classification ex-

periments with real and synthetic data. We showed that existing

high-precision pitch estimation techniques are sufficient for the task,

if combined with our conservative transcription approach. In partic-

ular, using the CQIFFT-M algorithm with conservative transcription

and removal of short duration notes, we were able to distinguish be-

tween 6 different temperaments of harpsichord recordings with 96%

accuracy (100% for synthetic data). We think it is unlikely that a

human expert could reach this level of accuracy, but we leave the

testing of human temperament estimation to future work.
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