1,130 research outputs found
Is Lake Prespa Jeopardizing the Ecosystem of Ancient Lake Ohrid?
Lake Prespa and Lake Ohrid, located in south-eastern Europe, are two lakes of extraordinary ecological value. Although the upstream Lake Prespa has no surface outflow, its waters reach the 160m lower Lake Ohrid through underground hydraulic connections. Substantial conservation efforts concentrate on oligotrophic downstream Lake Ohrid, which is famous for its large number of endemic and relict species. In this paper, we present a system analytical approach to assess the role of the mesotrophic upstream Lake Prespa in the ongoing eutrophication of Lake Ohrid. Almost the entire outflow from Lake Prespa is found to flow into Lake Ohrid through karst channels. However, 65% of the transported phosphorus is retained within the aquifer. Thanks to this natural filter, Lake Prespa does not pose an immediate threat to Lake Ohrid. However, a potential future four-fold increase of the current phosphorus load from Lake Prespa would lead to a 20% increase (+0.9mg P m−3) in the current phosphorus content of Lake Ohrid, which could jeopardize its fragile ecosystem. While being a potential future danger to Lake Ohrid, Lake Prespa itself is substantially endangered by water losses to irrigation, which have been shown to amplify its eutrophicatio
Are Major Histocompatibility Complex Molecules Involved in the Survival of Naive CD4+ T Cells?
The exact role of major histocompatibility complex (MHC) molecules in the peripheral survival of naive T cells is controversial, as some studies have suggested that they are critically required whereas others have suggested that they are not. Here we controlled for some of the features that differed among the earlier studies, and analyzed both the survival and expansion of naive CD4+ T cells transferred into MHC syngeneic, allogeneic, or MHC negative environments. We found that naive T cells transferred into MHC negative or allogeneic environments often fail to survive because of rejection and/or competition by natural killer (NK) cells, rather than failure to recognize a particular MHC allele. In the absence of NK cells, naive CD4+ T cells survived equally well regardless of the MHC type of the host. There was, however, an MHC requirement for extensive space-induced “homeostatic” expansion. Although the first few divisions occurred in the absence of MHC molecules, the cells did not continue to divide or transit to a CD44hi phenotype. Surprisingly, this MHC requirement could be satisfied by alleles other than the restricting haplotype. Therefore, space-induced expansion and survival are two different phenomena displaying different MHC requirements. Memory CD4+ T cells, whose survival and expansion showed no requirements for MHC molecules at all, dampened the space-induced expansion of naive cells, showing that the two populations are not independent in their requirements for peripheral niches
On the exchange of intersection and supremum of sigma-fields in filtering theory
We construct a stationary Markov process with trivial tail sigma-field and a
nondegenerate observation process such that the corresponding nonlinear
filtering process is not uniquely ergodic. This settles in the negative a
conjecture of the author in the ergodic theory of nonlinear filters arising
from an erroneous proof in the classic paper of H. Kunita (1971), wherein an
exchange of intersection and supremum of sigma-fields is taken for granted.Comment: 20 page
Nosocomial nontyphoidal salmonellosis after antineoplastic chemotherapy: reactivation of asymptomatic colonization?
An increased frequency of nontyphoidal salmonellosis is well established in cancer patients, but it is unclear whether this represents increased susceptibility to exogenous infection or opportunistic, endogenous reactivation of asymptomatic carriage. In a retrospective study, a simple case definition was used to identify the probable presence of reactivation salmonellosis in five cancer patients between 1996 and 2002. Reactivation salmonellosis was defined as the development of nosocomial diarrhea >72h after admission and following the administration of antineoplastic chemotherapy in an HIV-seronegative cancer patient who was asymptomatic on admission, in the absence of epidemiological evidence of a nosocomial outbreak. Primary salmonellosis associated with unrecognized nosocomial transmission or community acquisition and an unusually prolonged incubation period could not entirely be ruled out. During the same time period, another opportunistic infection, Pneumocystis pneumonia, was diagnosed in six cancer patients. Presumably, asymptomatic intestinal Salmonella colonization was converted to invasive infection by chemotherapy-associated intestinal mucosal damage and altered innate immune mechanisms. According to published guidelines, stool specimens from patients hospitalized for longer than 72h should be rejected unless the patient is neutropenic or ≧65 years old with significant comorbidity. However, in this study neutropenia was present in only one patient, and four patients were <65 years old. Guidelines should thus be revised in order not to reject stool culture specimens from such patients. In cancer patients, nosocomial salmonellosis can occur as a chemotherapy-triggered opportunistic reactivation infection that may be similar in frequency to Pneumocystis pneumoni
Ly6Chi Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis
Antibiotics, though remarkably useful, can also cause certain adverse effects.
We detected that treatment of adult mice with antibiotics decreases
hippocampal neurogenesis and memory retention. Reconstitution with normal gut
flora (SPF) did not completely reverse the deficits in neurogenesis unless the
mice also had access to a running wheel or received probiotics. In parallel to
an increase in neurogenesis and memory retention, both SPF-reconstituted mice
that ran and mice supplemented with probiotics exhibited higher numbers of
Ly6Chi monocytes in the brain than antibiotic-treated mice. Elimination of
Ly6Chi monocytes by antibody depletion or the use of knockout mice resulted in
decreased neurogenesis, whereas adoptive transfer of Ly6Chi monocytes rescued
neurogenesis after antibiotic treatment. We propose that the rescue of
neurogenesis and behavior deficits in antibiotic-treated mice by exercise and
probiotics is partially mediated by Ly6Chi monocytes
Photochemistry of Furyl- and Thienyldiazomethanes: Spectroscopic Characterization of Triplet 3-Thienylcarbene
Photolysis (λ \u3e 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N2 at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm–1, |E/hc| = 0.0554 cm–1; |D/hc| = 0.579 cm–1, |E/hc| = 0.0315 cm–1). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon—an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λmax = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C5H4S or C5H4O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively)
Effect of ship locking on sediment oxygen uptake in impounded rivers
In the majority of large river systems, flow is regulated and/or otherwise affected by
operational and management activities, such as ship locking. The effect of lock operation on
sediment-water oxygen fluxes was studied within a 12.9 km long impoundment at the Saar
River (Germany) using eddy-correlation flux measurements. The continuous observations
cover a time period of nearly 5 days and 39 individual locking events. Ship locking is
associated with the generation of surges propagating back and forth through the
impoundment which causes strong variations of near-bed current velocity and turbulence.
These wave-induced flow variations cause variations in sediment-water oxygen fluxes.
While the mean flux during time periods without lock operation was 0.5 6 0.1 g m�2 d�1,
it increased by about a factor of 2 to 1.0 6 0.5 g m�2 d�1 within time periods with ship
locking. Following the daily schedule of lock operations, fluxes are predominantly
enhanced during daytime and follow a pronounced diurnal rhythm. The driving force for the
increased flux is the enhancement of diffusive transport across the sediment-water interface
by bottom-boundary layer turbulence and perhaps resuspension. Additional means by which
the oxygen budget of the impoundment is affected by lock-induced flow variations are
discussed
Recent anthropogenic impact in ancient Lake Ohrid (Macedonia/Albania): a palaeolimnological approach
- …