356 research outputs found

    Design considerations for the Tandem Junction Solar Cell

    Get PDF
    Structure and operation of the tandem junction cell (TJC) are described. The impact of using only back contacts is discussed. A model is presented which explains operation of the TJC in terms of transistor action. The model is applied to predict TJC performance as a function of physical parameters

    Improving HTc Josephson Junctions (HTc JJ) by annealing: the role of vacancy-interstitial annihilation

    Full text link
    We have studied the annealing effect in transport properties of High temperature Josephson Junctions (HTc JJ) made by ion irradiation. Low temperature annealing (80 degrees Celsius) increases the JJ transition temperature (TJ) and the Ic.Rn product, where Ic is the critical current and Rn the normal resistance. We found that the spread in JJ characteristics can be lowered by sufficient long annealing times. Using random walk numerical simulations, we showed that the characteristic annealing time and the evolution of the spread in JJ characteristics can be explained by a vacancy-interstitial annihilation process rather than by an oxygen diffusion one.Comment: 7 pages and 3 figures submitted to Applied Physics Letter

    Optimization of Adaptation - A Multi-objective Approach for Optimizing Changes to Design Parameters

    Get PDF
    Dynamic optimization problems require constant tracking of the optimum. A solution for such a problem has to be adjustable in order to remain optimal as the optimum changes. The manner of changing design parameters to predefined values is dealt with in the field of control. Common control approaches do not consider the optimality of the design, in terms of the objective function, while adjusting to the new solution. This study highlights the issue of the optimality of adaptation, and defines a new optimization problem – ”Optimization of Adaptation”. It is a multiobjective problem that considers the cost of the adaptation and the optimality while the adaptation takes place. An evolutionary algorithm is proposed in order to solve this problem, and it is demonstrated, first, with an academic example, and then with a real life application of a robotic arm control

    The Temperature and Pressure Dependence of Nickel Partitioning between Olivine and Silicate Melt

    Get PDF
    We measured Ni partitioning between olivine and melt, D^(ol/liq)_(Ni), in experiments on mid-ocean ridge basalt (MORB) encapsulated in olivine at pressures from 1 atm to 3·0 GPa and temperatures from 1400 to 1550°C. We present a series of experiments where the temperature (T) at each pressure (P) was selected so that the liquid composition remained approximately constant over the entire P–T range. This approach allowed us to investigate the effects of T and P on D^(ol/liq)_(Ni), independent of substantial changes in liquid composition. Our experiments show that for a liquid with ∼18 wt% MgO, D^(ol/liq)_(Ni) decreases from 5·0 to 3·8 as the temperature increases from 1400 to 1550°C. Fitting our experimental results and literature data to thermodynamic expressions for D^(ol/liq)_(Ni) as a function of both temperature and liquid composition shows that the small variations in liquid composition in our experiments account for little of the observed variation of D^(ol/liq)_(Ni). Because the changes in volume and heat capacity of the exchange reaction MgSi_(0-5)O^(ol)_2 + D^(ol/liq)_(Ni) ↔ NiSi_(0-5)O^(ol)_2 + MgO^(liq) are small, D^(molar)_(Ni), the Ni partition coefficient on a molar basis, is well described by In(D^(molar)_(Ni))=-^(Δ_rHo_(T_(ref)),P_(ref)/_(RT) + ^Δ_rSo_(T_(ref),P_(ref))/_R - In (X^(liq)_(MgO)/X^(ol)_(MgSi)_(0-5)O_2) with Δ_rH^o_T_(ref),_P_(ref)/_R = 4375 K and Δ_rSo_T_(ref),_P_(ref)/_R = –2·023 for our data (Δ_rH^o_T_(ref),_P_(ref)/_R = 4338 K and Δ_rSo_T_(ref),_P_(ref)/_R = –1·956 for our experiments combined with a compilation of literature data). This expression is easy to use and applicable to a wide range of pressures, temperatures, and phase compositions. Based on our results and data from the literature, the temperature dependence of D^(ol/liq)_(Ni) leads to the prediction that when a deep partial melt from a peridotitic mantle source is brought to low pressure and cooled, the first Mg-rich olivines to crystallize can have significantly higher NiO contents than those in the residual source from which the melt was extracted. This enrichment in Ni is driven by the difference between the temperature of low-pressure crystallization and the temperature of melt extraction from the residue. The average observed enrichment of Ni in forsteritic olivine phenocrysts from Hawaii—relative to the typical olivines from mantle peridotites—is consistent with a simple scenario of high-temperature partial melting of an olivine-bearing source at the base of the lithosphere followed by low-temperature crystallization of olivine. The most extreme enrichments of Ni in Hawaiian olivine phenocrysts and the lower Ni contents of some olivines can also be explained by the known variability of Ni contents of olivines from mantle peridotites via the same simple scenario. Although we cannot rule out alternative hypotheses for producing the high-Ni olivines observed in Hawaii and elsewhere, these processes or materials are unnecessary to account for NiO enrichments in olivine. The absolute temperature, in addition to the difference between the temperature of melt segregation from the residue and the temperature of low-pressure crystallization, is a significant factor in determining the degree of Ni enrichment in olivine phenocrysts relative to the olivines in the mantle source. The moderate Ni enrichment observed in most komatiitic olivines compared with those of Hawaii may result from the higher absolute temperatures required to generate MgO-rich komatiitic melts. Observed NiO enrichments in early crystallizing komatiitic olivine are consistent with their high temperatures of crystallization and with a deep origin for the komatiite parental melts

    Fe-Mg Partitioning between Olivine and High-magnesian Melts and the Nature of Hawaiian Parental Liquids

    Get PDF
    We conducted 1 atm experiments on a synthetic Hawaiian picrite at fO_2 values ranging from the quartz–fayalite–magnetite (QFM) buffer to air and temperatures ranging from 1302 to 1600°C. Along the QFM buffer, olivine is the liquidus phase at ~1540°C and small amounts of spinel (< 0·2 wt %) are present in experiments conducted at and below 1350°C. The olivine becomes progressively more ferrous with decreasing temperature [Fo_(92·3) to Fo_(87·3), where Fo = 100 × Mg/(Mg + Fe), atomic]; compositions of coexisting liquids reflect the mode and composition of the olivine with concentrations of SiO_2, TiO_2, Al_(2)O_3, and CaO increasing monotonically with decreasing temperature, those of NiO and MgO decreasing, and FeO^* (all Fe as FeO) remaining roughly constant. An empirical relationship based on our data, T(°C) = 19·2 × (MgO in liquid, wt %) + 1048, provides a semi-quantitative geothermometer applicable to a range of Hawaiian magma compositions. The olivine–liquid exchange coefficient, K_(D,Fe^(2+)-Mg) = (FeO/MgO)^(ol)/(FeO/MgO)^(liq), is 0·345 ± 0·009 (1σ ) for our 11 experiments. A literature database of 446 1 atm experiments conducted within 0·25 log units of the QFM buffer (QFM ± 0·25) yields a median K_(D,Fe^(2+)-Mg) of 0·34; K_(D,Fe^(2+)-Mg) values from single experiments range from 0·41 to 0·13 and are correlated with SiO_2 and alkalis in the liquid, as well as the forsterite (Fo) content of the olivine. For 78 experiments with broadly tholeiitic liquid compositions (46–52 wt % SiO_2 and ≤ 3 wt % Na_(2)O + K_(2)O) coexisting with Fo_(92–80) olivines, and run near QFM (QFM ± 0·25), K_(D,Fe^(2+)-Mg) is approximately independent of composition with a median value of 0·340 ± 0·012 (error is the mean absolute deviation of the 78 olivine–glass pairs from the database that meet these compositional criteria), a value close to the mean value of 0·343 ± 0·008 from our QFM experiments. Thus, over the composition range encompassed by Hawaiian tholeiitic lavas and their parental melts, K_(D,Fe^(2+)-Mg) ~ 0·34 and, given the redox conditions and a Fo content for the most magnesian olivine phenocrysts, a parental melt composition can be reconstructed. The calculated compositions of the parental melts are sensitive to the input parameters, decreasing by ~1 wt % MgO for every log unit increase in the selected fO_2, every 0·5 decrease in the Fo-number of the target olivine, and every 0·015 decrease in K_(D,Fe^(2+)-Mg). For plausible ranges in redox conditions and Fo-number of the most MgO-rich olivine phenocrysts, the parental liquids for Hawaiian tholeiites are highly magnesian, in the range of 19–21 wt % MgO for Kilauea, Mauna Loa and Mauna Kea

    Exploring the parameter space of MagLIF implosions using similarity scaling. III. Rise-time scaling

    Full text link
    Magnetized Liner Inertial Fusion (MagLIF) is a z-pinch magneto-inertial-fusion (MIF) concept studied on the Z Machine at Sandia National Laboratories. Two important metrics characterizing current delivery to a z-pinch load are the peak current and the current-rise time, which is roughly the time interval to reach peak current. It is known that, when driving a z-pinch load with a longer current-rise time, the performance of the z-pinch decreases. However, a theory to understand and quantify this effect is still lacking. In this paper, we utilize a framework based on similarity scaling to analytically investigate the variations in performance of MagLIF loads when varying the current-rise time, or equivalently, the implosion timescale. To maintain similarity between the implosions, we provide the scaling prescriptions of the experimental input parameters defining a MagLIF load and derive the scaling laws for the stagnation conditions and for various performance metrics. We compare predictions of the theory to 2D numerical simulations using the radiation, magneto-hydrodynamic code HYDRA. For several metrics, we find acceptable agreement between the theory and simulations. Our results show that the voltage near the MagLIF load follows a weak scaling law φloadtφ0.12\smash{\varphi_{\rm load} \propto t_\varphi^{-0.12}} with respect to the characteristic timescale tφt_\varphi of the voltage source, instead of the ideal φloadtφ1\smash{\varphi_{\rm load} \propto t_\varphi^{-1}} scaling. This occurs because the imploding height of the MagLIF load must increase to preserve end losses. As a consequence of the longer imploding liners, the required total laser preheat energy and delivered electric energy increase. Overall, this study may help understand the trade-offs of the MagLIF design space when considering future pulsed-power generators with shorter and longer current-rise times.Comment: 15 pages, 20 figures, submitted to Phys. Plasmas. arXiv admin note: text overlap with arXiv:2209.1491

    The Interannual and Interdecadal Variability in Tropical Cyclone Activity: A Decade of Changes in the Climatological Character

    Get PDF
    During the last decade, there has been concern that the frequency or intensity of tropical cyclones (TCs) has increased. Also, climate models have shown varying results regarding the future occurrence and intensities of TC. Previous research from this group showed there is significant interannual and interdecadal variability in TC occurrence and intensity for some tropical ocean basins and sub-basins. This work examines global TC occurrence and intensity from 2010 to 2019 and compares this period to the same quantities from 1980 to 2009. The data used here are obtained from publicly available TC archives. Globally, the number of TC occurring over the latest decade is similar to the previous decade. However, while the 40-year trend shows an increase in TC, only intense hurricanes have shown an increase. The Atlantic Ocean and North Indian Ocean Basins show increases in TC activity, especially intense storms. The Southern Hemisphere and West Pacific Region show decreases in TC activity. In the West Pacific, intense TC did not increase, but the fraction of storms classified as intense increased. Only East Pacific TC activity showed no significant short- or long-term trends. Interannual and interdecadal variability in each sub-basin was found and there were some differences with previous work

    The Effect of Neutral Atoms on Capillary Discharge Z-pinch

    Get PDF
    We study the effect of neutral atoms on the dynamics of a capillary discharge Z-pinch, in a regime for which a large soft-x-ray amplification has been demonstrated. We extended the commonly used one-fluid magneto-hydrodynamics (MHD) model by separating out the neutral atoms as a second fluid. Numerical calculations using this extended model yield new predictions for the dynamics of the pinch collapse, and better agreement with known measured data.Comment: 4 pages, 4 postscript figures, to be published in Phys. Rev. Let

    OmniDepth: Dense Depth Estimation for Indoors Spherical Panoramas.

    Get PDF
    Recent work on depth estimation up to now has only focused on projective images ignoring 360o content which is now increasingly and more easily produced. We show that monocular depth estimation models trained on traditional images produce sub-optimal results on omnidirectional images, showcasing the need for training directly on 360o datasets, which however, are hard to acquire. In this work, we circumvent the challenges associated with acquiring high quality 360o datasets with ground truth depth annotations, by re-using recently released large scale 3D datasets and re-purposing them to 360o via rendering. This dataset, which is considerably larger than similar projective datasets, is publicly offered to the community to enable future research in this direction. We use this dataset to learn in an end-to-end fashion the task of depth estimation from 360o images. We show promising results in our synthesized data as well as in unseen realistic images

    Exploring the parameter space of MagLIF implosions using similarity scaling. II. Current scaling

    Full text link
    Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial-fusion (MIF) concept, which is presently being studied on the Z Pulsed Power Facility. The MagLIF platform has achieved interesting plasma conditions at stagnation and produced significant fusion yields in the laboratory. Given the relative success of MagLIF, there is a strong interest to scale the platform to higher peak currents. However, scaling MagLIF is not entirely straightforward due to the large dimensionality of the experimental input parameter space and the large number of distinct physical processes involved in MIF implosions. In this work, we propose a novel method to scale MagLIF loads to higher currents. Our method is based on similarity (or similitude) scaling and attempts to preserve much of the physics regimes already known or being studied on today's Z pulsed-power driver. By avoiding significant deviations into unexplored and/or less well-understood regimes, the risk of unexpected outcomes on future scaled-up experiments is reduced. Using arguments based on similarity scaling, we derive the scaling rules for the experimental input parameters characterizing a MagLIF load (as functions of the characteristic current driving the implosion). We then test the estimated scaling laws for various metrics measuring performance against results of 2D radiation--magneto-hydrodynamic HYDRA simulations. Agreement is found between the scaling theory and the simulation results.Comment: 19 pages, submitted to Physics of Plasma
    corecore