595 research outputs found

    Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    Full text link
    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds

    A Review of Adult Mortality Due to 2009 Pandemic (H1N1) Influenza A in California

    Get PDF
    BACKGROUND: While children and young adults had the highest attack rates due to 2009 pandemic (H1N1) influenza A (2009 H1N1), studies of hospitalized cases noted high fatality in older adults. We analyzed California public health surveillance data to better characterize the populations at risk for dying due to 2009 H1N1. METHODS AND FINDINGS: A case was an adult ā‰„20 years who died with influenza-like symptoms and laboratory results indicative of 2009 H1N1. Demographic and clinical data were abstracted from medical records using a standardized case report form. From April 3, 2009-August 10, 2010, 541 fatal cases ā‰„20 years with 2009 H1N1 were reported. Influenza fatality rates per 100,000 population were highest in persons 50-59 years (3.5; annualized rateā€Š=ā€Š2.6) and 60-69 years (2.3; annualized rateā€Š=ā€Š1.7) compared to younger and older age groups (0.4-1.9; annualized ratesā€Š=ā€Š0.3-1.4). Of 486 cases hospitalized prior to death, 441 (91%) required intensive care unit (ICU) admission. ICU admission rates per 100,000 population were highest in adults 50-59 years (8.6). ICU case-fatality ratios among adults ranged from 24-42%, with the highest ratios in persons 70-79 years. A total of 425 (80%) cases had co-morbid conditions associated with severe seasonal influenza. The prevalence of most co-morbid conditions increased with increasing age, but obesity, pregnancy and obstructive sleep apnea decreased with age. Rapid testing was positive in 97 (35%) of 276 tested. Of 482 cases with available data, 384 (80%) received antiviral treatment, including 49 (15%) of 328 within 48 hours of symptom onset. CONCLUSIONS: Adults aged 50-59 years had the highest fatality due to 2009 H1N1; older adults may have been spared due to pre-existing immunity. However, once infected and hospitalized in intensive care, case-fatality ratios were high for all adults, especially in those over 60 years. Vaccination of adults older than 50 years should be encouraged

    Tunable Depletion Potentials Driven By Shape Variation Of Surfactant Micelles

    Get PDF
    Depletion interaction potentials between micron-sized colloidal particles are induced by nanometer-scale surfactant micelles composed of hexaethylene glycol monododecyl ether (C12E6), and they are measured by video microscopy. The strength and range of the depletion interaction is revealed to arise from variations in shape anisotropy of the surfactant micelles. This shape anisotropy increases with increasing sample temperature. By fitting the colloidal interaction potentials to theoretical models, we extract micelle length and shape anisotropy as a function of temperature. This work introduces shape anisotropy tuning as a means to control interparticle interactions in colloidal suspensions, and it shows how the interparticle depletion potentials of micron-scale objects can be employed to probe the shape and size of surrounding macromolecules at the nanoscale

    State Transition Algorithm

    Full text link
    In terms of the concepts of state and state transition, a new heuristic random search algorithm named state transition algorithm is proposed. For continuous function optimization problems, four special transformation operators called rotation, translation, expansion and axesion are designed. Adjusting measures of the transformations are mainly studied to keep the balance of exploration and exploitation. Convergence analysis is also discussed about the algorithm based on random search theory. In the meanwhile, to strengthen the search ability in high dimensional space, communication strategy is introduced into the basic algorithm and intermittent exchange is presented to prevent premature convergence. Finally, experiments are carried out for the algorithms. With 10 common benchmark unconstrained continuous functions used to test the performance, the results show that state transition algorithms are promising algorithms due to their good global search capability and convergence property when compared with some popular algorithms.Comment: 18 pages, 28 figure

    Total Cost of Ownership Driven Methodology for Predictive Maintenance Implementation in Industrial Plants

    Get PDF
    Part 4: Product and Asset Life Cycle Management in Smart Factories of Industry 4.0International audienceThis paper proposes a methodology to drive from a strategic point of view the implementation of a predictive maintenance policy within an industrial plant. The methodology integrates the evaluation of system performances, used to identify the critical components, with simulation and cost analysis. The goal is to evaluate predictive maintenance implementation scenarios based on alternative condition monitoring (CM) solutions, under the lenses of Total Cost of Ownership (TCO). This allows guiding the decision on where in the industrial system to install diagnostic solutions for monitoring of asset health, by keeping a systemic and life cycle-oriented perspective. Technical systemic performances are evaluated through Monte Carlo simulation based on the Reliability Block Diagram (RBD) model of the system. To validate the methodology, an application case study focused on a production line of a relevant Italian company in the food sector is presented

    Reactions of a Be-10 beam on proton and deuteron targets

    Get PDF
    The extraction of detailed nuclear structure information from transfer reactions requires reliable, well-normalized data as well as optical potentials and a theoretical framework demonstrated to work well in the relevant mass and beam energy ranges. It is rare that the theoretical ingredients can be tested well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has been examined through the 10Be(d,p) reaction in inverse kinematics at equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of Be-10 on protons was used to select optical potentials for the analysis of the transfer data. Additionally, data from the elastic and inelastic scattering of Be-10 on deuterons was used to fit optical potentials at the four measured energies. Transfers to the two bound states and the first resonance in Be-11 were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA). Consistent values of the spectroscopic factor of both the ground and first excited states were extracted from the four measurements, with average values of 0.71(5) and 0.62(4) respectively. The calculations for transfer to the first resonance were found to be sensitive to the size of the energy bin used and therefore could not be used to extract a spectroscopic factor.Comment: 16 Pages, 10 figure

    Experimental and Theoretical Study of Bound and Quasibound States of CE-

    Get PDF
    The negative ion of cerium is investigated experimentally with tunable infrared laser photodetachment spectroscopy and theoretically with relativistic configuration interaction in the continuum formalism. The relative cross section for neutral atom production is measured with a crossed ion-beamā€“laser-beam apparatus over the photon energy range of 0.54ā€“0.75 eV. A rich resonance spectrum is revealed near the threshold with, at least, 12 peaks observed due to transitions from bound states of [formula] to either bound or quasibound excited states of the negative ion. Theoretical calculations of the photodetachment cross sections enable identification of the transitions responsible for the measured peaks. Two of the peaks are due to electric dipole-allowed bound-bound transitions in [formula], making cerium only the second atomic negative ion that has been demonstrated to support multiple bound states of opposite parity. In addition, combining the experimental data with the theoretical analysis determines the electron affinity of cerium to be 0.628(10) eV and the fine structure splitting of the ground state of [formula] ([formula]) to be 0.097 75(4) eV

    Characterization and optimization of heroin hapten-BSA conjugates: method development for the synthesis of reproducible hapten-based vaccines

    Get PDF
    A potential new treatment for drug addiction is immunization with vaccines that induce antibodies that can abrogate the addictive effects of the drug of abuse. One of the challenges in the development of a vaccine against drugs of abuse is the availability of an optimum procedure that gives reproducible and high yielding hapten-protein conjugates. In this study, a heroin/morphine surrogate hapten (MorHap) was coupled to bovine serum albumin (BSA) using maleimide-thiol chemistry. MorHap-BSA conjugates with 3, 5, 10, 15, 22, 28, and 34 haptens were obtained using different linker and hapten ratios. Using this optimized procedure, MorHap-BSA conjugates were synthesized with highly reproducible results and in high yields. The number of haptens attached to BSA was compared by 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay, modified Ellmanā€™s test and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Among the three methods, MALDI-TOF MS discriminated subtle differences in hapten density. The effect of hapten density on enzyme-linked immunosorbent assay (ELISA) performance was evaluated with seven MorHap-BSA conjugates of varying hapten densities, which were used as coating antigens. The highest antibody binding was obtained with MorHap-BSA conjugates containing 3ā€“5 haptens. This is the first report that rigorously analyzes, optimizes and characterizes the conjugation of haptens to proteins that can be used for vaccines against drugs of abuse. The effect of hapten density on the ELISA detection of antibodies against haptens demonstrates the importance of careful characterization of the hapten density by the analytical techniques described. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-014-8035-x) contains supplementary material, which is available to authorized users
    • ā€¦
    corecore