2,472 research outputs found

    Modelica - A Language for Physical System Modeling, Visualization and Interaction

    Get PDF
    Modelica is an object-oriented language for modeling of large, complex and heterogeneous physical systems. It is suited for multi-domain modeling, for example for modeling of mechatronics including cars, aircrafts and industrial robots which typically consist of mechanical, electrical and hydraulic subsystems as well as control systems. General equations are used for modeling of the physical phenomena, No particular variable needs to be solved for manually. A Modelica tool will have enough information to do that automatically. The language has been designed to allow tools to generate efficient code automatically. The modeling effort is thus reduced considerably since model components can be reused and tedious and error-prone manual manipulations are not needed. The principles of object-oriented modeling and the details of the Modelica language as well as several examples are presented

    CSF protein biomarkers predicting longitudinal reduction of CSF β-amyloid42 in cognitively healthy elders.

    Get PDF
    β-amyloid (Aβ) plaque accumulation is a hallmark of Alzheimer's disease (AD). It is believed to start many years prior to symptoms and is reflected by reduced cerebrospinal fluid (CSF) levels of the peptide Aβ1-42 (Aβ42). Here we tested the hypothesis that baseline levels of CSF proteins involved in microglia activity, synaptic function and Aβ metabolism predict the development of Aβ plaques, assessed by longitudinal CSF Aβ42 decrease in cognitively healthy people. Forty-six healthy people with three to four serial CSF samples were included (mean follow-up 3 years, range 2-4 years). There was an overall reduction in Aβ42 from a mean concentration of 211-195 pg ml(-1) after 4 years. Linear mixed-effects models using longitudinal Aβ42 as the response variable, and baseline proteins as explanatory variables (n=69 proteins potentially relevant for Aβ metabolism, microglia or synaptic/neuronal function), identified 10 proteins with significant effects on longitudinal Aβ42. The most significant proteins were angiotensin-converting enzyme (ACE, P=0.009), Chromogranin A (CgA, P=0.009) and Axl receptor tyrosine kinase (AXL, P=0.009). Receiver-operating characteristic analysis identified 11 proteins with significant effects on longitudinal Aβ42 (largely overlapping with the proteins identified by linear mixed-effects models). Several proteins (including ACE, CgA and AXL) were associated with Aβ42 reduction only in subjects with normal baseline Aβ42, and not in subjects with reduced baseline Aβ42. We conclude that baseline CSF proteins related to Aβ metabolism, microglia activity or synapses predict longitudinal Aβ42 reduction in cognitively healthy elders. The finding that some proteins only predict Aβ42 reduction in subjects with normal baseline Aβ42 suggest that they predict future development of the brain Aβ pathology at the earliest stages of AD, prior to widespread development of Aβ plaques

    Supernovae data and perturbative deviation from homogeneity

    Full text link
    We show that a spherically symmetric perturbation of a dust dominated Ω=1\Omega=1 FRW universe in the Newtonian gauge can lead to an apparent acceleration of standard candles and provide a fit to the magnitude-redshift relation inferred from the supernovae data, while the perturbation in the gravitational potential remains small at all scales. We also demonstrate that the supernovae data does not necessarily imply the presence of some additional non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model fitting the supernovae data (with appropriate initial conditions) will be equivalent to a perturbed FRW spacetime along the past light cone.Comment: 8 pages, 3 figures; v2: 1 figure added, references added/updated, minor modifications and clarifications, matches published versio

    The Herschel exploitation of local galaxy Andromeda (HELGA) V: Strengthening the case for substantial interstellar grain growth

    Get PDF
    In this paper we consider the implications of the distributions of dust and metals in the disc of M31. We derive mean radial dust distributions using a dust map created from Herschel images of M31 sampling the entire far-infrared (FIR) peak. Modified blackbodies are fit to approximately 4000 pixels with a varying, as well as a fixed, dust emissivity index (beta). An overall metal distribution is also derived using data collected from the literature. We use a simple analytical model of the evolution of the dust in a galaxy with dust contributed by stellar sources and interstellar grain growth, and fit this model to the radial dust-to-metals distribution across the galaxy. Our analysis shows that the dust-to-gas gradient in M31 is steeper than the metallicity gradient, suggesting interstellar dust growth is (or has been) important in M31. We argue that M31 helps build a case for cosmic dust in galaxies being the result of substantial interstellar grain growth, while the net dust production from stars may be limited. We note, however, that the efficiency of dust production in stars, e.g., in supernovae (SNe) ejecta and/or stellar atmospheres, and grain destruction in the interstellar medium (ISM) may be degenerate in our simple model. We can conclude that interstellar grain growth by accretion is likely at least as important as stellar dust production channels in building the cosmic dust component in M31.Comment: 12 pages, 7 figures. Published in MNRAS 444, 797. This version is updated to match the published versio

    Aging phenomena in spin glasses: theory, experiment, and simulation

    Full text link
    We study numerically temperature-shift and field-shift aging protocols on the 3-dimensional (3D) Ising Edwards-Anderson (EA) spin-glass (SG) model focusing on respectively the temperature-chaos nature and the stability under a static field of the SG phase. The results of the latter strongly support the droplet theory which predicts the instability of the SG phase under the field. They are also discussed in relation with the experimental studies.Comment: 6 pages, 5 figures, submitted to ICM200

    Hubble flow variance and the cosmic rest frame

    Get PDF
    We characterize the radial and angular variance of the Hubble flow in the COMPOSITE sample of 4534 galaxies, on scales in which much of the flow is in the nonlinear regime. With no cosmological assumptions other than the existence of a suitably averaged linear Hubble law, we find with decisive Bayesian evidence (ln B >> 5) that the Hubble constant averaged in independent spherical radial shells is closer to its asymptotic value when referred to the rest frame of the Local Group, rather than the standard rest frame of the Cosmic Microwave Background. An exception occurs for radial shells in the range 40/h-60/h Mpc. Angular averages reveal a dipole structure in the Hubble flow, whose amplitude changes markedly over the range 32/h-62/h Mpc. Whereas the LG frame dipole is initially constant and then decreases significantly, the CMB frame dipole initially decreases but then increases. The map of angular Hubble flow variation in the LG rest frame is found to coincide with that of the residual CMB temperature dipole, with correlation coefficient -0.92. These results are difficult to reconcile with the standard kinematic interpretation of the motion of the Local Group in response to the clustering dipole, but are consistent with a foreground non-kinematic anisotropy in the distance-redshift relation of 0.5% on scales up to 65/h Mpc. Effectively, the differential expansion of space produced by nearby nonlinear structures of local voids and denser walls and filaments cannot be reduced to a local boost. This hypothesis suggests a reinterpretation of bulk flows, which may potentially impact on calibration of supernovae distances, anomalies associated with large angles in the CMB anisotropy spectrum, and the dark flow inferred from the kinematic Sunyaev-Zel'dovich effect. It is consistent with recent studies that find evidence for a non-kinematic dipole in the distribution of distant radio sources.Comment: 37 pages, 9 tables, 13 figures; v2 adds extensive new analysis (including additional subsections, tables, figures); v3 adds a Monte Carlo analysis (with additional table, figure) which further tightens the statistical robustness of the dipole results; v4 adds further clarifications, small corrections, references and discussion of Planck satellite results; v5 typos fixed, matches published versio

    Plasma phosphorylated tau181 and neurodegeneration in Alzheimer's disease

    Get PDF
    We examined if plasma phosphorylated tau is associated with neurodegeneration in Alzheimer’s disease. We investigated 372 cognitively unimpaired participants, 554 mild cognitive impairment patients, and 141 Alzheimer’s disease dementia patients. Tau phosphorylated at threonine 181, regional cortical thickness (using magnetic resonance imaging) and hypometabolism (using fluorodeoxyglucose positron emission tomography) were measured longitudinally. High plasma tau was associated with hypometabolism and cortical atrophy at baseline and over time, and longitudinally increased tau was associated with accelerated atrophy, but these associations were only observed in Aβ‐positive participants. Plasma phosphorylated tau may identify and track processes linked to neurodegeneration in Alzheimer’s disease

    Spin effects in transport through non-Fermi liquid quantum dots

    Full text link
    The current-voltage characteristic of a one dimensional quantum dot connected via tunnel barriers to interacting leads is calculated in the region of sequential tunneling. The spin of the electrons is taken into account. Non-Fermi liquid correlations implying spin-charge separation are assumed to be present in the dot and in the leads. It is found that the energetic distance of the peaks in the linear conductance shows a spin-induced parity effect at zero temperature T. The temperature dependence of the positions of the peaks depends on the non-Fermi liquid nature of the system. For non-symmetric tunnel barriers negative differential conductances are predicted, which are related to the participation in the transport of collective states in the quantum dot with larger spins. Without spin-charge separation the negative differential conductances do not occur. Taking into account spin relaxation destroys the spin-induced conductance features. The possibility of observing in experiment the predicted effects are briefly discussed.Comment: 15 pages, 16 figures, accepted for publication on Physical Review
    corecore