182 research outputs found

    Differences in the mechanism of inoculation between a semi-persistent and a non-persistent aphid-transmitted plant virus

    Get PDF
    Inoculation of the semi-persistent cauliflower mosaic virus (CaMV, genus Caulimovirus) is associated with successive brief (5-10 s) intracellular stylet punctures (pd) when aphids probe in epidermal and mesophyll cells. In contrast to non-persistent viruses, there is no evidence for which of the pd subphases (II-1, II-2 and II-3) is involved in the inoculation of CaMV. Experiments were conducted using the electrical penetration graph (EPG) technique to investigate which particular subphases of the pd are associated with the inoculation of CaMV to turnip by its aphid vector Brevicoryne brassicae. In addition, the same aphid species/test plant combination was used to compare the role of the pd subphases in the inoculation of the non-persistent turnip mosaic virus (TuMV, genus Potyvirus). Inoculation of TuMV was found to be related to subphase II-1, confirming earlier results, but CaMV inoculation appeared to be related exclusively to subphase II-2 instead. The mechanism of CaMV inoculation and the possible nature of subphase II-2 are discussed in the scope of our findings

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Photosystem-II D1 protein mutants of Chlamydomonas reinhardtii in relation to metabolic rewiring and remodelling of H-bond network at Q(B) site

    Get PDF
    Photosystem II (PSII) reaction centre D1 protein of oxygenic phototrophs is pivotal for sustaining photosynthesis. Also, it is targeted by herbicides and herbicide-resistant weeds harbour single amino acid substitutions in D1. Conservation of D1 primary structure is seminal in the photosynthetic performance in many diverse species. In this study, we analysed built-in and environmentally-induced (high temperature and high photon fluency-HT/HL) phenotypes of two D1 mutants of Chlamydomonas reinhardtii with Ala250Arg (A250R) and Ser264Lys (S264K) substitutions. Both mutations differentially affected efficiency of electron transport and oxygen production. In addition, targeted metabolomics revealed that the mutants undergo specific differences in primary and secondary metabolism, namely, amino acids, organic acids, pigments, NAD, xanthophylls and carotenes. Levels of lutein, beta-carotene and zeaxanthin were in sync with their corresponding gene transcripts in response to HT/HL stress treatment in the parental (IL) and A250R strains. D1 structure analysis indicated that, among other effects, remodelling of H-bond network at the Q(B) site might underpin the observed phenotypes. Thus, the D1 protein, in addition to being pivotal for efficient photosynthesis, may have a moonlighting role in rewiring of specific metabolic pathways, possibly involving retrograde signalling

    Response of the Diatom Phaeodactylum tricornutum to Photooxidative Stress Resulting from High Light Exposure

    Get PDF
    The response of microalgae to photooxidative stress resulting from high light exposure is a well-studied phenomenon. However, direct analyses of photosystem II (PSII) D1 protein (the main target of photoinhibition) in diatoms are scarce. In this study, the response of the diatom model species Phaeodactylum tricornutum to short-term exposure to high light was examined and the levels of D1 protein determined immunochemically. Low light (LL) acclimated cells (40 µmol photons m−2 s−1) subjected to high light (HL, 1,250 µmol photons m−2 s−1) showed rapid induction of non-photochemical quenching (NPQ) and ca. 20-fold increase in diatoxanthin (DT) concentration. This resulted from the conversion of diadinoxanthin (DD) to DT through the activation of the DD-cycle. D1 protein levels under LL decreased about 30% after 1 h of the addition of lincomycin (LINC), a chloroplast protein synthesis inhibitor, showing significant D1 degradation and repair under low irradiance. Exposure to HL lead to a 3.2-fold increase in D1 degradation rate, whereas average D1 repair rate was 1.3-x higher under HL than LL, leading to decreased levels of D1 protein under HL. There were significant effects of both HL and LINC on P. tricornutum maximum quantum yield of PSII (Fv/Fm), showing a reduction of active PSII reaction centres. Partial recovery of Fv/Fm in the dark demonstrates the photosynthetic resilience of this diatom to changes in the light regime. P. tricornutum showed high allocation of total protein to D1 and an active D1-repair cycle to limit photoinhibition

    Identifying the Age Cohort Responsible for Transmission in a Natural Outbreak of Bordetella bronchiseptica

    Get PDF
    Identifying the major routes of disease transmission and reservoirs of infection are needed to increase our understanding of disease dynamics and improve disease control. Despite this, transmission events are rarely observed directly. Here we had the unique opportunity to study natural transmission of Bordetella bronchiseptica – a directly transmitted respiratory pathogen with a wide mammalian host range, including sporadic infection of humans – within a commercial rabbitry to evaluate the relative effects of sex and age on the transmission dynamics therein. We did this by developing an a priori set of hypotheses outlining how natural B. bronchiseptica infections may be transmitted between rabbits. We discriminated between these hypotheses by using force-of-infection estimates coupled with random effects binomial regression analysis of B. bronchiseptica age-prevalence data from within our rabbit population. Force-of-infection analysis allowed us to quantify the apparent prevalence of B. bronchiseptica while correcting for age structure. To determine whether transmission is largely within social groups (in this case litter), or from an external group, we used random-effect binomial regression to evaluate the importance of social mixing in disease spread. Between these two approaches our results support young weanlings – as opposed to, for example, breeder or maternal cohorts – as the age cohort primarily responsible for B. bronchiseptica transmission. Thus age-prevalence data, which is relatively easy to gather in clinical or agricultural settings, can be used to evaluate contact patterns and infer the likely age-cohort responsible for transmission of directly transmitted infections. These insights shed light on the dynamics of disease spread and allow an assessment to be made of the best methods for effective long-term disease control

    Observation of the solid-state photo-CIDNP effect in entire cells of cyanobacteria Synechocystis

    Get PDF
    Cyanobacteria are widely used as model organism of oxygenic photosynthesis due to being the simplest photosynthetic organisms containing both photosystem I and II (PSI and PSII). Photochemically induced dynamic nuclear polarization (photo-CIDNP) 13C magic-angle spinning (MAS) NMR is a powerful tool in understanding the photosynthesis machinery down to atomic level. Combined with selective isotope enrichment this technique has now opened the door to study primary charge separation in whole living cells. Here, we present the first photo-CIDNP observed in whole cells of the cyanobacterium Synechocystis

    Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    Get PDF
    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms

    Analytical approaches to photobiological hydrogen production in unicellular green algae

    Get PDF
    Several species of unicellular green algae, such as the model green microalga Chlamydomonas reinhardtii, can operate under either aerobic photosynthesis or anaerobic metabolism conditions. A particularly interesting metabolic condition is that of “anaerobic oxygenic photosynthesis”, whereby photosynthetically generated oxygen is consumed by the cell’s own respiration, causing anaerobiosis in the culture in the light, and induction of the cellular “hydrogen metabolism” process. The latter entails an alternative photosynthetic electron transport pathway, through the oxygen-sensitive FeFe-hydrogenase, leading to the light-dependent generation of molecular hydrogen in the chloroplast. The FeFe-hydrogenase is coupled to the reducing site of photosystem-I via ferredoxin and is employed as an electron-pressure valve, through which electrons are dissipated, thus permitting a sustained electron transport in the thylakoid membrane of photosynthesis. This hydrogen gas generating process in the cells offers testimony to the unique photosynthetic metabolism that can be found in many species of green microalgae. Moreover, it has attracted interest by the biotechnology and bioenergy sectors, as it promises utilization of green microalgae and the process of photosynthesis in renewable energy production. This article provides an overview of the principles of photobiological hydrogen production in microalgae and addresses in detail the process of induction and analysis of the hydrogen metabolism in the cells. Furthermore, methods are discussed by which the interaction of photosynthesis, respiration, cellular metabolism, and H(2) production in Chlamydomonas can be monitored and regulated

    Differential and functional interactions emphasize the multiple roles of polyamines in plants.

    No full text
    Biogenic amines putrescine, spermidine and spermine are ubiquitous in nature and have interested researchers because they are essential for cell division and viability, and due to a large body of their pharmacological effects on growth and development in most living cells. The genes and enzymes involved in their biosynthetic pathways are now established and characterized. In recent years, molecular aspects of polyamine action have also begun to emerge. Our model is the ripening tomato fruit in which processes of cell division, cell expansion and cell growth have ceased, and yet the cells are responsive at biochemical and molecular levels to genetically manipulated concentrations of putrescine (Put), spermidine (Spd) and spermine (Spm). Thus, transcriptome, limited protein profiling, and metabolome studies of transgenic tomato fruit have yielded significant new information on cellular processes impacted by polyamine manipulation. We have used these datasets to determine the linear correlation coefficients between the endogenous levels of Put, Spd and Spm with several parameters. Results of our analysis presented here show that effects of the diamine Put generally contrast those with polyamines Spd and Spm, emphasizing that individual biogenic amines should be considered to have defined action in plant biology and that they differentially affect growth and development. A multiple function model of polyamine action is discussed to explain the role of polyamines in most organisms, in general, and ripening fruit, in particular

    Higher polyamines restore and enhance metabolic memory in ripening fruit

    No full text
    Polyamines are ubiquitous, biogenic amines that have been implicated in diverse cellular functions in most living organisms. Ever since spermine phosphate crystals were isolated over three centuries ago, scientists have kept busy in unraveling the mystery behind biological roles of spermine and other known polyamines, viz., putrescine and spermidine. Although the pathway of polyamine biosynthesis has been elucidated, the molecular basis of their in vivo function is far from being understood. Molecular biology tools have provided a promising avenue in this direction, with success achieved in altering endogenous polyamines in plants by over-expression and knock-out of the genes responsible for polyamine biosynthesis. Such transgenic material has become a good genetic resource to learn about the biological effects of polyamines and their interaction with other signaling molecules. Interestingly, engineered accumulation of higher polyamines, spermidine and spermine, in tomato in a fruit-specific manner restored metabolic activity even at late developmental stages of fruit ripening, reviving cellular programs underlying N:C signaling, energy and glucose metabolism. Along with these, a wide array of genes regulating transcription, translation, signal transduction, chaperone activity, stress proteins, amino acid biosynthesis, ethylene biosynthesis and action, polyamine biosynthesis, isoprenoid pathway and flavonoid biosynthesis was activated. Based on various reports and our results, we suggest that polyamines act as 'surrogate messengers' and nudge other signaling molecules, such as plant hormones and NO, to activate a vast genetic network to regulate growth, development and senescence. © 2008 Elsevier Ireland Ltd. All rights reserved
    corecore