18 research outputs found

    Charge doping and large lattice expansion in oxygen-deficient heteroepitaxial WO3

    Get PDF
    Tungsten trioxide is a versatile material with widespread applications ranging from electrochromic and optoelectronic devices to water splitting and catalysis of chemical reactions. For technological applications, thin films of WO3 are particularly appealing, taking advantage from high surface-to-volume ratio and tunable physical properties. However, the growth of stoichiometric, crystalline thin films is challenging because the deposition conditions are very sensitive to the formation of oxygen vacancies. In this work, we show how background oxygen pressure during pulsed laser deposition can be used to tune the structural and electronic properties of WO3 thin films. By performing X-ray diffraction and low-temperature transport measurements, we find changes in WO3 lattice volume up to 10%, concomitantly with an insulator-to-metal transition as a function of increased level of electron doping. We use advanced ab initio calculations to describe in detail the properties of the oxygen vacancy defect states, and their evolution in terms of excess charge concentration. Our results depict an intriguing scenario where structural, electronic, optical, and transport properties of WO3 single-crystal thin films can all be purposely tuned by a suited control of oxygen vacancies formation during growth

    Balanced electron-hole transport in spin-orbit semimetal SrIrO3 heterostructures

    Get PDF
    Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear, electronlike Hall effect up to 33 T.Comment: 5 pages, 4 figure

    Phosphorus Molecules on Ge(001): A Playground for Controlled n‑Doping of Germanium at High Densities

    No full text
    The achievement of controlled high n-type doping in Ge will enable the fabrication of a number of innovative nanoelectronic and photonic devices. In this work, we present a combined scanning tunneling microscopy, secondary ions mass spectrometry, and magneto­transport study to understand the atomistic doping process of Ge by P<sub>2</sub> molecules. Harnessing the one-dimer footprint of P<sub>2</sub> molecules on the Ge(001) surface, we achieved the incorporation of a full P monolayer in Ge using a relatively low process temperature. The consequent formation of P–P dimers, however, limits electrical activation above a critical donor density corresponding to P–P spacing of less than a single dimer row. With this insight, tuning of doping parameters allows us to repeatedly stack such 2D P layers to achieve 3D electron densities up to ∼2 × 10<sup>20</sup> cm<sup>–3</sup>
    corecore