213 research outputs found
How I turned my kitchen in a lab during the pandemic and its (non-)icy outcomes
Unwanted icing has major safety and economic repercussions on human activities, affecting means of transportation, infrastructures, and consumer goods. Compared to the common deicing methods in use today, intrinsically icephobic surfaces can decrease ice accumulation and formation without any active intervention from humans or machines. However, such systems often require complex fabrication methods and can be costly, which limits their applicability.
In this study, we report the preparation and characterization of a series of slippery lubricant-infused porous surfaces (SLIPSs) realized by impregnating with silicone oil a candle soot layer deposited on double-sided 3M adhesive tape.
Despite the use of common household items, these SLIPSs showed anti-icing performance comparable to other systems described in the literature (ice adhesion < 20 kPa) and a good resistance to mechanical and environmental damages.
To improve the overall performances, we explored several design solution involving surface functionalization of the inner pores and the use of fluorinated lubricants.
The use of a flexible and functional substrate as tape allowed these devices to be stretchable without suffering significant degradation and highlights how these systems can be easily prepared and applied anywhere needed. In addition, the possibility of deforming the substrate can pave the way for the application of SLIPS technology in mechanical ice removal methodologies, drastically incrementing their performanc
Nanoscaffolds for guided cardiac repair: the new therapeutic challenge of regenerative medicine
Cardiovascular diseases represent the leading cause of death and disability in the world. At the end-stage of heart failure, heart transplantation remains the ultimate option. Therefore, due to the numerous drawbacks associated with this procedure, new alternative strategies to repair the wounded heart are required. Cell therapy is a potential option to regenerate functional myocardial tissue. The characteristics of the ideal cardiac cell therapy include the use of the proper cell type and delivery methods as well as the choice of a suitable biomaterial acting as a cellular vehicle. Since traditional delivery methods are characterized by several counter backs, among which low cell survival, new engineered micro- and nanostructured materials are today extensively studied to provide a good cardiac therapy. In this review, we report the most recent achievements in the field of cell therapy for myocardial infarction treatment and heart regeneration, focusing on the most commonly used cell sources, the traditional approaches used to deliver cells at the damaged site, and a series of novel technologies based on recent advancements of bioengineering, highlighting the tremendous potential that nanoscaffolds have in this framework
Direct laser writing of liquid crystal elastomers oriented by a horizontal electric field
Background: The ability to fabricate components capable of performing actuation in a reliable and controlled manner is one of the main research topics in the field of microelectromechanical systems (MEMS). However, the development of these technologies can be limited in many cases by 2D lithographic techniques employed in the fabrication process. Direct Laser Writing (DLW), a 3D microprinting technique based on two-photon polymerization, can offer novel solutions to prepare, both rapidly and reliably, 3D nano- and microstructures of arbitrary complexity. In addition, the use of functional materials in the printing process can result in the fabrication of smart and responsive devices. Methods: In this study, we present a novel methodology for the printing of 3D actuating microelements comprising Liquid Crystal Elastomers (LCEs) obtained by DLW. The alignment of the mesogens was performed using a static electric field (1.7 V/m) generated by indium-tin oxide (ITO) electrodes patterned directly on the printing substrates. Results: When exposed to a temperature higher than 50°C, the printed microstructures actuated rapidly and reversibly of about 8% in the direction perpendicular to the director. Conclusions: A novel methodology was developed that allows the printing of directional actuators comprising LCEs via DLW. To impart the necessary alignment of the mesogens, a static electric field was applied before the printing process by making use of flat ITO electrodes present on the printing substrates. The resulting microelements showed a reversible change in shape when heated higher than 50 °C.</p
Electrically-Conductive Polyketone Nanocomposites Based on Reduced Graphene Oxide
In this work, we investigated the functionalization of polyketone 30 (PK30) with glycyl-glycine (Gly-Gly) via the Paal-Knorr reaction with the aim of homogenously dispersing two types of reduced graphene oxide (rGO, i.e., lrGO and hrGO, the former characterized by a lower degree of reduction in comparison to the latter) by non-covalent interactions. The functional PK30-Gly-Gly polymer was effective in preparing composites with homogeneously distributed rGO characterized by an effective percolation threshold at 5 wt. %. All the composites showed a typical semiconductive behavior and stable electrical response after several heating/cooling cycles from 30 to 115 °C. Composites made by hrGO displayed the same resistive behaviour even if flanked by a considerable improvement on conductivity, in agreement with the more reduced rGO content. Interestingly, no permanent percolative network was shown by the composite with 4 wt. % of lrGO at temperatures higher than 45 °C. This material can be used as an ON-OFF temperature sensor and could find interesting applications as sensing material in soft robotics applications
A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography
The investigation of the crossing of exogenous substances through the blood-brain barrier (BBB) is object of intensive research in biomedicine, and one of the main obstacles for reliable in vitro evaluations is represented by the difficulties at the base of developing realistic models of the barrier, which could resemble as most accurately as possible the in vivo environment. Here, for the first time, a 1:1 scale, biomimetic, and biohybrid BBB model is proposed. Microtubes inspired to the brain capillaries were fabricated through two-photon lithography and used as scaffolds for the co-culturing of endothelial-like bEnd.3 and U87 glioblastoma cells. The constructs show the maturation of tight junctions, good performances in terms of hindering dextran diffusion through the barrier, and a satisfactory trans-endothelial electrical resistance. Moreover, a mathematical model is developed, which assists in both the design of the 3D microfluidic chip and its characterization. Overall, these results show the effective formation of a bioinspired cellular barrier based on microtubes reproducing brain microcapillaries to scale. This system will be exploited as a realistic in vitro model for the investigation of BBB crossing of nanomaterials and drugs, envisaging therapeutic and diagnostic applications for several brain pathologies, including brain cancer
- …