150 research outputs found

    Neutrophil Dynamics Affect Mycobacterium tuberculosis Granuloma Outcomes and Dissemination

    Get PDF
    Neutrophil infiltration into tuberculous granulomas is often associated with higher bacteria loads and severe disease but the basis for this relationship is not well understood. To better elucidate the connection between neutrophils and pathology in primate systems, we paired data from experimental studies with our next generation computational model GranSim to identify neutrophil-related factors, including neutrophil recruitment, lifespan, and intracellular bacteria numbers, that drive granuloma-level outcomes. We predict mechanisms underlying spatial organization of neutrophils within granulomas and identify how neutrophils contribute to granuloma dissemination. We also performed virtual deletion and depletion of neutrophils within granulomas and found that neutrophils play a nuanced role in determining granuloma outcome, promoting uncontrolled bacterial growth in some and working to contain bacterial growth in others. Here, we present three key results: We show that neutrophils can facilitate local dissemination of granulomas and thereby enable the spread of infection. We suggest that neutrophils influence CFU burden during both innate and adaptive immune responses, implying that they may be targets for therapeutic interventions during later stages of infection. Further, through the use of uncertainty and sensitivity analyses, we predict which neutrophil processes drive granuloma severity and structure

    Reactivation of Latent Tuberculosis in Cynomolgus Macaques Infected with SIV Is Associated with Early Peripheral T Cell Depletion and Not Virus Load

    Get PDF
    HIV-infected individuals with latent Mycobacterium tuberculosis (Mtb) infection are at significantly greater risk of reactivation tuberculosis (TB) than HIV-negative individuals with latent TB, even while CD4 T cell numbers are well preserved. Factors underlying high rates of reactivation are poorly understood and investigative tools are limited. We used cynomolgus macaques with latent TB co-infected with SIVmac251 to develop the first animal model of reactivated TB in HIV-infected humans to better explore these factors. All latent animals developed reactivated TB following SIV infection, with a variable time to reactivation (up to 11 months post-SIV). Reactivation was independent of virus load but correlated with depletion of peripheral T cells during acute SIV infection. Animals experiencing reactivation early after SIV infection (<17 weeks) had fewer CD4 T cells in the periphery and airways than animals reactivating in later phases of SIV infection. Co-infected animals had fewer T cells in involved lungs than SIV-negative animals with active TB despite similar T cell numbers in draining lymph nodes. Granulomas from these animals demonstrated histopathologic characteristics consistent with a chronically active disease process. These results suggest initial T cell depletion may strongly influence outcomes of HIV-Mtb co-infection

    Coordination of Membrane and Actin Cytoskeleton Dynamics during Filopodia Protrusion

    Get PDF
    Leading edge protrusion of migrating cells involves tightly coordinated changes in the plasma membrane and actin cytoskeleton. It remains unclear whether polymerizing actin filaments push and deform the membrane, or membrane deformation occurs independently and is subsequently stabilized by actin filaments. To address this question, we employed an ability of the membrane-binding I-BAR domain of IRSp53 to uncouple the membrane and actin dynamics and to induce filopodia in expressing cells. Using time-lapse imaging and electron microscopy of IRSp53-I-BAR-expressing B16F1 melanoma cells, we demonstrate that cells are not able to protrude or maintain durable long extensions without actin filaments in their interior, but I-BAR-dependent membrane deformation can create a small and transient space at filopodial tips that is subsequently filled with actin filaments. Moreover, the expressed I-BAR domain forms a submembranous coat that may structurally support these transient actin-free protrusions until they are further stabilized by the actin cytoskeleton. Actin filaments in the I-BAR-induced filopodia, in contrast to normal filopodia, do not have a uniform length, are less abundant, poorly bundled, and display erratic dynamics. Such unconventional structural organization and dynamics of actin in I-BAR-induced filopodia suggests that a typical bundle of parallel actin filaments is not necessary for generation and mechanical support of the highly asymmetric filopodial geometry. Together, our data suggest that actin filaments may not directly drive the protrusion, but only stabilize the space generated by the membrane deformation; yet, such stabilization is necessary for efficient protrusion

    Searches for Neutrinos from Gamma-Ray Bursts Using the IceCube Neutrino Observatory

    Get PDF
    Gamma-ray bursts (GRBs) are considered as promising sources of ultra-high-energy cosmic rays (UHECRs) due to their large power output. Observing a neutrino flux from GRBs would offer evidence that GRBs are hadronic accelerators of UHECRs. Previous IceCube analyses, which primarily focused on neutrinos arriving in temporal coincidence with the prompt gamma-rays, found no significant neutrino excess. The four analyses presented in this paper extend the region of interest to 14 days before and after the prompt phase, including generic extended time windows and targeted precursor searches. GRBs were selected between 2011 May and 2018 October to align with the data set of candidate muon-neutrino events observed by IceCube. No evidence of correlation between neutrino events and GRBs was found in these analyses. Limits are set to constrain the contribution of the cosmic GRB population to the diffuse astrophysical neutrino flux observed by IceCube. Prompt neutrino emission from GRBs is limited to ≲1% of the observed diffuse neutrino flux, and emission on timescales up to 104^{4} s is constrained to 24% of the total diffuse flux

    Searches for Neutrinos from Gamma-Ray Bursts using the IceCube Neutrino Observatory

    Get PDF
    Gamma-ray bursts (GRBs) are considered as promising sources of ultra-high-energy cosmic rays (UHECRs) due to their large power output. Observing a neutrino flux from GRBs would offer evidence that GRBs are hadronic accelerators of UHECRs. Previous IceCube analyses, which primarily focused on neutrinos arriving in temporal coincidence with the prompt gamma rays, found no significant neutrino excess. The four analyses presented in this paper extend the region of interest to 14 days before and after the prompt phase, including generic extended time windows and targeted precursor searches. GRBs were selected between May 2011 and October 2018 to align with the data set of candidate muon-neutrino events observed by IceCube. No evidence of correlation between neutrino events and GRBs was found in these analyses. Limits are set to constrain the contribution of the cosmic GRB population to the diffuse astrophysical neutrino flux observed by IceCube. Prompt neutrino emission from GRBs is limited to \lesssim1% of the observed diffuse neutrino flux, and emission on timescales up to 10410^4 s is constrained to 24% of the total diffuse flux

    Recent Progress in Solar Atmospheric Neutrino Searches with IceCube

    Get PDF
    Cosmic-rays interacting with nucleons in the solar atmosphere produce a cascade of particles that give rise to a flux of high-energy neutrinos and gamma-rays. Fermi has observed this gamma-ray flux; however, the associated neutrino flux has escaped observation. In this contribution, we put forward two strategies to detect these neutrinos, which, if seen, would push forward our understanding of the solar atmosphere and provide a new testing ground of neutrino properties. First, we will extend the previous analysis, which used high-energy through-going muon events collected in the years of maximum solar activity and yielded only flux upper limits, to include data taken during the solar minima from 2018 to 2020. Extending the analysis to the solar minima is important as the gamma-ray data collected during past solar cycles indicates a possible enhancement in the high-energy neutrino flux. Second, we will incorporate sub-TeV events and include contributions from all neutrino flavors. These will improve our analysis sensitivity since the solar atmospheric spectrum is soft and, due to oscillation, contains significant contributions of all neutrino flavors. As we will present in this contribution, these complementary strategies yield a significant improvement in sensitivity, making substantial progress towards observing this flux

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Mechanical design of the optical modules intended for IceCube-Gen2

    Get PDF
    IceCube-Gen2 is an expansion of the IceCube neutrino observatory at the South Pole that aims to increase the sensitivity to high-energy neutrinos by an order of magnitude. To this end, about 10,000 new optical modules will be installed, instrumenting a fiducial volume of about 8 km3. Two newly developed optical module types increase IceCube’s current sensitivity per module by a factor of three by integrating 16 and 18 newly developed four-inch PMTs in specially designed 12.5-inch diameter pressure vessels. Both designs use conical silicone gel pads to optically couple the PMTs to the pressure vessel to increase photon collection efficiency. The outside portion of gel pads are pre-cast onto each PMT prior to integration, while the interiors are filled and cast after the PMT assemblies are installed in the pressure vessel via a pushing mechanism. This paper presents both the mechanical design, as well as the performance of prototype modules at high pressure (70 MPa) and low temperature (−40∘C), characteristic of the environment inside the South Pole ice

    Studies of a muon-based mass sensitive parameter for the IceTop surface array

    Get PDF

    Measuring the Neutrino Cross Section Using 8 years of Upgoing Muon Neutrinos Observed with IceCube

    Get PDF
    The IceCube Neutrino Observatory detects neutrinos at energies orders of magnitude higher than those available to current accelerators. Above 40 TeV, neutrinos traveling through the Earth will be absorbed as they interact via charged current interactions with nuclei, creating a deficit of Earth-crossing neutrinos detected at IceCube. The previous published results showed the cross section to be consistent with Standard Model predictions for 1 year of IceCube data. We present a new analysis that uses 8 years of IceCube data to fit the νμ_{μ} absorption in the Earth, with statistics an order of magnitude better than previous analyses, and with an improved treatment of systematic uncertainties. It will measure the cross section in three energy bins that span the range 1 TeV to 100 PeV. We will present Monte Carlo studies that demonstrate its sensitivity
    corecore