4,133 research outputs found

    Gravitational Techniwaves

    Full text link
    We investigate the production and possible detection of gravitational waves stemming from the electroweak phase transition in the early universe in models of minimal walking technicolor. In particular we discuss the two possible scenarios in which one has only one electroweak phase transition and the case in which the technicolor dynamics allows for multiple phase transitions.Comment: 30 pages, 5 figures. v2: minor changes, references added, title changed in journa

    The Electroweak Phase Transition in Ultra Minimal Technicolor

    Full text link
    We unveil the temperature-dependent electroweak phase transition in new extensions of the Standard Model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly-conformal dynamics achieved by the means of multiple matter representations. In particular, we focus on the low energy effective theory introduced to describe Ultra Minimal Walking Technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify regions of parameter space which yield a strong first order transition. A striking feature of the model is the existence of a second phase transition associated to the electroweak-singlet sector. The interplay between these two transitions leads to an extremely rich phase diagram.Comment: 38 RevTeX pages, 9 figure

    Shoot scattering phase function for Scots pine and its effect on canopy reflectance

    Get PDF
    Spectral and directional reflectance properties of coniferous forests are known to differ from those of broadleaf forests. Many reasons have been proposed for this, including differences in the optical properties of leaves and shoots, the latter being considered the basic unit in radiative transfer modeling of a coniferous canopy. Unfortunately, very little empirical data is available on the spectrodirectional scattering properties of shoots. Here, we present results of angular measurements (using an ASD FieldSpec 3 spectroradiometer mounted on LAGOS) of ten Scots pine shoots in the spectral range 400--2000 nm. The shoots were found to scatter anisotropically with most of the radiation reflected back into the hemisphere where the radiation source was positioned. To describe the measured directional scattering pattern, we propose a phase function consisting of isotropic and Lambertian scattering components. Next, we used the proposed scattering phase function in a Monte Carlo radiative transfer model. Angular reflectance of a modeled horizontally homogeneous shoot canopy has, due to shoot scattering anisotropy, an enhanced “dark spot” as compared with a canopy composed of isotropic scatterers and a quantitatively similar leaf canopy.Peer reviewe

    The Nordic model: conditions, origins, outcomes, lessons

    Get PDF

    Electric-driven Zonal Hydraulics in Non-Road Mobile Machinery

    Get PDF
    The goal of this research is to apply direct-driven hydraulics (DDH) to the concept of zonal (i.e., locally and operation-focused) hydraulics, which is an essential step in the hybridization and automation of machines. DDH itself aims to combine the best properties of electric and hydraulic technologies and will lead to increased productivity, minimized energy consumption and higher robust performance in both stationary and mobile machines operating in various environments. In the proposed setup, the speed and position control of a double-acting cylinder is implemented directly with an electric motor drive in a closed-loop system without conventional control valves and an oil tank. The selection of the location of the hydraulic accumulator and connection of the external leakage lines will also be part of this study. Simulations and experimental research to study the details of the hydromechanical and electrical realization of the DDH are performed
    corecore