73 research outputs found

    Potential tree species extinction, colonization and recruitment in Afromontane forest relicts

    Get PDF
    Tree species regeneration determines future forest structure and composition, but is often severely hampered in small forest relicts. To study succession, long-term field observations or simulation models are used but data, knowledge or resources to run such models are often scarce in tropical areas. We propose and implement a species accounting equation, which includes the co-occurring events extinction, colonization and recruitment and which can be solved by using data from a single inventory. We solved this species accounting equation for the 12 remaining Afromontane cloud forest relicts in Taita Hills, Kenya by comparing the tree species present among the seedling, sapling and mature tree layer in 82 plots. A simultaneous ordination of the seedling, sapling and mature tree layer data revealed that potential species extinctions, colonizations and recruitments may induce future species shifts. On landscape level, the potential extinction debt amounted to 9% (7 species) of the regional species pool. On forest relict level, the smallest relicts harbored an important proportion of the tree species diversity in the regeneration layer. The average potential recruitment credit, defined as species only present as seedling or sapling, was 3 and 6 species for large and small forest relicts, while the average potential extinction debt was 12 and 4 species, respectively. In total, both large and small relicts are expected to lose approximately 20% of their current local tree species pool. The species accounting equations provide a time and resource effective tool and give an improved understanding of the conservation status and possible future succession dynamics of forest relicts, which can be particularly useful in a context of participatory monitoring

    Is sexual risk behaviour associated with an increased risk of transfusion-transmissible infections in blood donors from Western and Pacific countries? A systematic review and meta-analysis

    Get PDF
    Background and Objectives The donor medical questionnaire is designed to aid blood establishments in supporting a safe blood supply. According to blood donor deferral policies, sexual risk behaviour (SRB) leads to a (temporary) deferral from blood donation. This systematic review aimed to scientifically underpin these policies by identifying the best available evidence on the association between SRB and the risk of transfusion transmissible infections (TTIs). Materials & Methods Studies from three databases investigating the link between SRB (excluding men who have sex with men (MSM)) and TTIs (HBV, HCV, HIV, Treponema pallidum) in donors from Western and Pacific countries were obtained and assessed on eligibility by two reviewers independently. The association between SRB and TTIs was expressed by calculating pooled effect measures via meta-analyses. The GRADE methodology (Grades of Recommendation, Assessment, Development and Evaluation) was used to assess the quality of evidence. Results We identified 3750 references and finally included 15 observational studies. Meta-analyses showed that there is a significant (P < 0 center dot 05) positive association between the following SRB and HBV and/or HCV infection: having sex with an intravenous drug user (high-certainty evidence), receiving money or goods for sex (moderate-high certainty evidence), having a sex partner with hepatitis/HIV (moderate-certainty evidence) and paid for sex or anal sex (low-certainty evidence). Conclusion Sexual risk behaviour (including having sex with an intravenous drug user, receiving money or goods for sex or having a sex partner with hepatitis/HIV) is probably associated with an increased risk of HBV/HCV infection in blood donors from Western and Pacific countries

    Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Get PDF
    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.Comment: Published in ApJ (2018 April 5); 13 pages, 4 figure

    Increasing the Depth of Current Understanding: Sensitivity Testing of Deep-Sea Larval Dispersal Models for Ecologists

    Get PDF
    Larval dispersal is an important ecological process of great interest to conservation and the establishment of marine protected areas. Increasing numbers of studies are turning to biophysical models to simulate dispersal patterns, including in the deep-sea, but for many ecologists unassisted by a physical oceanographer, a model can present as a black box. Sensitivity testing offers a means to test the models' abilities and limitations and is a starting point for all modelling efforts. The aim of this study is to illustrate a sensitivity testing process for the unassisted ecologist, through a deep-sea case study example, and demonstrate how sensitivity testing can be used to determine optimal model settings, assess model adequacy, and inform ecological interpretation of model outputs. Five input parameters are tested (timestep of particle simulator (TS), horizontal (HS) and vertical separation (VS) of release points, release frequency (RF), and temporal range (TR) of simulations) using a commonly employed pairing of models. The procedures used are relevant to all marine larval dispersal models. It is shown how the results of these tests can inform the future set up and interpretation of ecological studies in this area. For example, an optimal arrangement of release locations spanning a release area could be deduced; the increased depth range spanned in deep-sea studies may necessitate the stratification of dispersal simulations with different numbers of release locations at different depths; no fewer than 52 releases per year should be used unless biologically informed; three years of simulations chosen based on climatic extremes may provide results with 90% similarity to five years of simulation; and this model setup is not appropriate for simulating rare dispersal events. A step-by-step process, summarising advice on the sensitivity testing procedure, is provided to inform all future unassisted ecologists looking to run a larval dispersal simulation

    Linking social complexity and vocal complexity: a parid perspective

    Get PDF
    The Paridae family (chickadees, tits and titmice) is an interesting avian group in that species vary in important aspects of their social structure and many species have large and complex vocal repertoires. For this reason, parids represent an important set of species for testing the social complexity hypothesis for vocal communication—the notion that as groups increase in social complexity, there is a need for increased vocal complexity. Here, we describe the hypothesis and some of the early evidence that supported the hypothesis. Next, we review literature on social complexity and on vocal complexity in parids, and describe some of the studies that have made explicit tests of the social complexity hypothesis in one parid—Carolina chickadees, Poecile carolinensis. We conclude with a discussion, primarily from a parid perspective, of the benefits and costs of grouping and of physiological factors that might mediate the relationship between social complexity and changes in signalling behaviour

    Limited diversity associated with duplicated class II MHC-DRB genes in the red squirrel population in the United Kingdom compared with continental Europe

    Get PDF
    The red squirrel (Sciurus vulgaris) population in the United Kingdom has declined over the last century and is now on the UK endangered species list. This is the result of competition from the eastern grey squirrel (S. carolinensis) which was introduced in the 19th century. However, recent evidence suggests that the rate of population decline is enhanced by squirrelpox disease, caused by a viral infection carried asymptomatically by grey squirrels but to which red squirrels are highly susceptible. Population genetic diversity provides some resilience to rapidly evolving or exotic pathogens. There is currently no data on genetic diversity of extant UK squirrel populations with respect to genes involved in disease resistance. Diversity is highest at loci involved in the immune response including genes clustered within the major histocompatibility complex (MHC). Using the class II DRB locus as a marker for diversity across the MHC region we genotyped 110 red squirrels from locations in the UK and continentalEurope. Twenty four Scvu-DRB alleles at two functional loci; Scvu-DRB1 and Scvu- DRB2, were identified. High levels of diversity were identified at both loci in the continental populations. In contrast, no diversity was observed at the Scvu-DRB2 locus in the mainland UK population while a high level of homozygosity was observed at the Scvu-DRB1 locus. The red squirrel population in the UK appears to lack the extensive MHC diversity associated with continental populations, a feature which may have contributed to their rapid decline

    Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub

    Get PDF
    The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (www.spibirds.org)\u2014a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration
    corecore