13 research outputs found

    Parametric Optimization Of Magneto-Rheological Fluid Damper Using Particle Swarm Optimization

    Get PDF
    This paper presents a parametric modeling of a magneto-rheological (MR) damper using a Particle Swarm Optimization (PSO) method. The objective of this paper is to optimize the parameter values of the MR fluid damper behavior using the Bouc-Wen model. The parametric identification was imposed beforehand in replicating the behavior of the MR fluid damper. The algebraic function from a number of hysteresis models was steered by comparing selected models: Bingham, Bouc-Wen and BoucWen by Kwok. A simulation method was operated in investigating these models by employing MATLAB reliant from the model intricacy. The experimental data was presented in terms of the time histories of the displacement, the velocity and the force parameters, measured for both constant and variable current settings and at a selected frequency applied to the damper. The model parameters were determined using a set of experimental measurements corresponding to different current constant values. It has been shown that the MR damper model’s response via the proposed approach is in good agreement with the MR damper test rig counterpar

    COVID-19 vaccination in patients with immune thrombocytopenia

    Get PDF
    Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by low platelet count and increased bleeding risk. COVID-19 vaccination has been described as risk factor for de novo ITP, but the effects of COVID-19 vaccination in patients with ITP are unknown. Our aims were to investigate the effects of COVID-19 vaccination in ITP patients on platelet count, bleeding complications and ITP exacerbation (any of: ≥50% decline in platelet count; or nadir platelet count 20% decrease from baseline; or use of rescue therapy). Platelet counts of ITP patients and healthy controls were collected immediately before, 1 and 4 weeks after first and second vaccination. Linear mixed-effects modelling was applied to analyze platelet counts over time. We included 218 ITP patients (50.9% female, mean age 55 years and median platelet count of 106x109/L) and 200 healthy controls (60.0% female, mean age 58 years and median platelet count of 256x109/L). Platelet counts decreased by 6.3% after vaccination. We observed no difference in decrease between the groups. Thirty ITP patients (13.8%, 95%CI 9.5%-19.1%) had an exacerbation and 5 (2.2%, 95%CI 0.7%-5.3%) suffered from a bleeding event. Risk factors for ITP exacerbation were platelet count <50x109/L (OR 5.3, 95%CI 2.1-13.7), ITP treatment at time of vaccination (OR 3.4, 95%CI 1.5-8.0) and age (OR 0.96 per year, 95%CI 0.94-0.99). Our study highlights safety of COVID-19 vaccination in ITP patients and importance of close monitoring platelet counts in a subgroup of ITP patients. ITP patients with exacerbation responded well on therapy

    Tailored anticoagulant treatment after a first venous thromboembolism:protocol of the Leiden Thrombosis Recurrence Risk Prevention (L-TRRiP) study - cohort-based randomised controlled trial

    Get PDF
    Introduction: Patients with a first venous thromboembolism (VTE) are at risk of recurrence. Recurrent VTE (rVTE) can be prevented by extended anticoagulant therapy, but this comes at the cost of an increased risk of bleeding. It is still uncertain whether patients with an intermediate recurrence risk or with a high recurrence and high bleeding risk will benefit from extended anticoagulant treatment, and whether a strategy where anticoagulant duration is tailored on the predicted risks of rVTE and bleeding can improve outcomes. The aim of the Leiden Thrombosis Recurrence Risk Prevention (L-TRRiP) study is to evaluate the outcomes of tailored duration of long-term anticoagulant treatment based on individualised assessment of rVTE and major bleeding risks.Methods and analysis: The L-TRRiP study is a multicentre, open-label, cohort-based, randomised controlled trial, including patients with a first VTE. We classify the risk of rVTE and major bleeding using the L-TRRiP and VTE-BLEED scores, respectively. After 3 months of anticoagulant therapy, patients with a low rVTE risk will discontinue anticoagulant treatment, patients with a high rVTE and low bleeding risk will continue anticoagulant treatment, whereas all other patients will be randomised to continue or discontinue anticoagulant treatment. All patients will be followed up for at least 2 years. Inclusion will continue until the randomised group consists of 608 patients; we estimate to include 1600 patients in total. The primary outcome is the combined incidence of rVTE and major bleeding in the randomised group after 2 years of follow-up. Secondary outcomes include the incidence of rVTE and major bleeding, functional outcomes, quality of life and cost-effectiveness in all patients.Ethics and dissemination: The protocol was approved by the Medical Research Ethics Committee Leiden-Den Haag-Delft. Results are expected in 2028 and will be disseminated through peer-reviewed journals and during (inter)national conferences.</p

    Graft Versus Leukemia Separates From Graft Versus Host Disease By Magnitude and Avidity Of The Allo-Reactive T Cell Response After Allogeneic Stem Cell Transplantation and Donor Lymphocyte Infusion

    Full text link
    Abstract Donor lymphocyte infusion (DLI) after allogeneic stem cell transplantation (alloSCT) can be a curative treatment for patients with hematological malignancies due to the capacity of allo-reactive donor derived T cells to mediate a curative potent graft versus leukemia (GVL) effect. However, associated acute graft versus host disease (GVHD) remains a major risk. To study the role of CD8+ T cells in GVL reactivity and GVHD, we selected patients who responded to DLI (without preceding cytoreductive treatment) for recurrent disease or incomplete donor chimerism after alloSCT. The patients were grouped according to absence (7 patients) or presence (6 patients) of GVHD. To quantify the number of circulating activated CD8+ T cells before DLI and at the time of disease regression or conversion to full donor chimerism we measured the frequencies of CD8+ HLA-DR+ T cells in peripheral blood samples by flowcytometry. Before DLI, highly variable numbers of CD8+ HLA-DR+ T cells were found (37.8 ± 42.9 x106/L), that significantly increased after DLI (309±473 x106/L, p&lt;0.005), demonstrating involvement of CD8+ HLA-DR+ T cells in immune responses after DLI. To determine the specificity and functional avidity of the CD8+ HLA-DR+ T cells, these cells were isolated using flowcytometric cell sorting and clonally expanded. From a total of 30 samples, on average 225 T cell clones per sample were obtained and tested for recognition of patient and donor derived EBV-LCL, CD40L stimulated B cells (CD40L-B cells) and monocyte derived dendritic cells (monoDC). Surprisingly, in many samples from both patient cohorts high percentages of clones recognizing EBV-LCL derived from both patient and donor but not recognizing CD40L-B cells and monoDC were found. These T cells may be involved in anti-EBV responses irrespective of the presence of a GVL effect or GVHD. To investigate whether the magnitude of the allo-immune response was different in patients with or without GVHD coinciding the GVL effect, we compared the frequencies of allo-reactive T cell clones in samples from both patient groups. Significantly lower percentages of allo-reactive T cell clones were found in patients without GVHD as compared to patients with GVHD (5.1 ± 7.0% versus 32.5 ± 20.0% respectively, p&lt;0.01), showing that coinciding GVHD is associated with an increased magnitude of the allo-reactive T cell response. Per patient, we determined the number of unique antigens targeted by the isolated T cell clones by characterizing the targeted MiHA using whole genome association scanning. In line with the lower total number of allo-reactive T cells, a lower number of unique MiHA was targeted in patients without GVHD (2.7±3.5) as compared to patients with GVHD (10.2±5.8, p=0.015). To determine whether occurrence of GVHD could be explained by the tissue specificity and functional avidity of the allo-reactive T cell response after DLI, we tested the T cell clones obtained from both patient cohorts for recognition of fibroblasts (FB) derived from skin biopsies of the patient. To mimic pro-inflammatory conditions, FB were pretreated for 4 days with 100 IU/ml IFN-γ. Recognition of untreated FB was exclusively mediated by T cell clones obtained from patients with GVHD, whereas recognition of IFN-γ pretreated FB was found for clones isolated from patients with or without coinciding GVHD. In addition, several T cell clones isolated from patients without GVHD were found to be directed against MiHA encoded by genes with a broad expression profile in non-hematopoietic cells comprising FB, despite absence of FB recognition under non-inflammatory conditions. This suggests that in addition to the tissue expression profile of the MiHA other factors, comprising the local inflammatory milieu, play a role in the risk of developing GVHD. In conclusion, our data show a strong correlation between the magnitude and the functional avidity of the allo-reactive CD8+ T cell response and the occurrence of GVHD after DLI. We hypothesize that the limited production of pro-inflammatory cytokines due to the moderate magnitude of the immune response in patients mounting a GVL response without coinciding GVHD reactivity may have prevented the induction of GVHD by the lower avidity allo-reactive T cells, that under pro inflammatory conditions can mediate GVHD by recognition of normal non-hematopoietic cells of the patient. Disclosures: No relevant conflicts of interest to declare. </jats:sec

    Table_1.docx

    No full text
    IntroductionConditioning regimens preceding allogeneic stem cell transplantation (alloSCT) can cause tissue damage and acceleration of the development of graft-versus-host disease (GVHD). T-cell-depleted alloSCT with postponed donor lymphocyte infusion (DLI) may reduce GVHD, because tissue injury can be restored at the time of DLI. In this study, we investigated the presence of tissue injury and inflammation in skin during the period of hematologic recovery and immune reconstitution after alloSCT.MethodsSkin biopsies were immunohistochemically stained for HLA class II, CD1a, CD11c, CD40, CD54, CD68, CD86, CD206, CD3, and CD8. HLA class II-expressing cells were characterized as activated T-cells, antigen-presenting cells (APCs), or tissue repairing macrophages. In sex-mismatched patient and donor couples, origin of cells was determined by multiplex analysis combining XY-FISH and fluorescent immunohistochemistry.ResultsNo inflammatory environment due to pretransplant conditioning was detected at the time of alloSCT, irrespective of the conditioning regimen. An increase in HLA class II-positive macrophages and CD3 T-cells was observed 12–24 weeks after myeloablative alloSCT, but these macrophages did not show signs of interaction with the co-localized T-cells. In contrast, during GVHD, an increase in HLA class II-expressing cells coinciding with T-cell interaction was observed, resulting in an overt inflammatory reaction with the presence of activated APC, activated donor T-cells, and localized upregulation of HLA class II expression on epidermal cells. In the absence of GVHD, patient derived macrophages were gradually replaced by donor-derived macrophages although patient-derived macrophages were detectable even 24 weeks after alloSCT.ConclusionConditioning regimens cause tissue damage in the skin, but this does not result in a local increase of activated APC. In contrast to the inflamed situation in GVHD, when interaction takes place between activated APC and donor T-cells, the tissue damage caused by myeloablative alloSCT results in dermal recruitment of HLA class II-positive tissue repairing macrophages co-existing with increased numbers of patient- and donor-derived T-cells, but without signs of specific interaction and initiation of an immune response. Thus, the local skin damage caused by the conditioning regimen appears to be insufficient as single factor to provoke GVHD induction.</p

    The Effect of COVID-19 Vaccine in Patients with Immune Thrombocytopenia

    Full text link
    Abstract Background: Immune thrombocytopenia (ITP) is an acquired autoimmune disorder against platelets characterized by a low platelet count and increased bleeding risk. ITP is likely to rise from defective immune tolerance in addition to a triggering event, such as vaccination. COVID-19 vaccination is associated with a small increased risk of development of de novo ITP. In patients historically diagnosed with ITP, relapse of thrombocytopenia after COVID-19 vaccination has been described. However, the precise platelet dynamics in previously diagnosed ITP patients after COVID-19 vaccination is unknown Aims: To investigate the effect of the COVID-19 vaccine on platelet count, the occurrence of severe bleeding complications and necessity of rescue medication in patients historically diagnosed with ITP. Methods: Platelet counts of ITP patients and healthy controls were collected immediately before, 1 and 4 weeks after the first and second vaccination. Linear mixed effects modelling was applied to analyse platelet count dynamics over time. Results: We included 218 ITP patients (50.9% women) with a mean (SD) age of 58 (17) years and 200 healthy controls (60.0% women) with a mean (SD) age of 58 (13) years. Healthy controls and ITP patients had similar baseline characteristics (Table 1). 201/218 (92.2%)ITP patients received the mRNA-1273 vaccine, 16/218 (7.3%) the BNT162b vaccine and 1/218 (0.46%) the Vaxzevria vaccine. All healthy controls received the mRNA-1273 vaccine. Fifteen (6.8%) patients needed rescue medication (Table 1). Significantly more ITP patients who needed rescue medication were on ITP treatment prior COVID-19 vaccination compared to patients without exacerbation (56.2% (7/16) vs 27.4% (55/202), p=0.016). We found a significant effect of vaccination on platelet count over time in both ITP patients and healthy controls (Figure 1A). Platelet counts of ITP patients decreased 7.9% between baseline and 4 weeks after second vaccination (p=0.045). Rescue medication and prior treatment significantly increased platelet count over time (p=0.042 and p=0.044). Healthy controls decreased 4.5% in platelet count (p&amp;lt;0.001) between baseline and 4 weeks after second vaccination. There was no significant difference in platelet count between ITP patients and healthy controls (p=0.78) (Figure 2). IPT patients with a baseline platelet count of &amp;gt;150x10 9/L had a significant decrease of platelet count 4 weeks after second vaccination compared to baseline (median platelet count (IQR) 205 (94) vs 203 x10 9/L (109) p=0.001). No significant decrease was seen in ITP patients with a baseline platelet count &amp;lt;150 x10 9/L. Median (IQR) platelet counts were similar between patients with and without exacerbation, except for 4 weeks after second vaccination (112 (105) vs 45 x 10 9/L (70), p=0.025) (Figure 1B). No significant effect was observed over time in ITP patients with rescue medication (p=0.478) (Figure 1C). In ITP patients without rescue medication, COVID-19 vaccination had a significant effect over time (p=0.001), especially 1 week after second vaccination (Figure1B). Of the 15 patients who needed rescue medication, 8/15 patients (53.3%) received rescue medication within 4 weeks after first vaccination and 4/15 (26.67%) needed rescue medication after the first as well as after the second vaccination. 3/15 (20.0%) patients needed rescue medication after the second vaccination. In the total ITP population, 5/218 (2.2%) experienced a WHO grade 2-4 bleeding complication and 3/218 (1.4%) needed platelet transfusion. 4/5 (80%) bleedings occurred before the second vaccination. One of these patients had fatal varices bleeding, although platelet count was normal. Conclusion: COVID-19 vaccination has a significant effect on platelet count in ITP patients and healthy controls. In 6.8% of ITP patients rescue medication was needed and in 2.2% of ITP patients a WHO grade 2-4 bleeding occurred. The majority of rescue medication was given and the majority bleeding complications occurred in the 4 weeks after the first vaccination. Our results demonstrate that close monitoring of platelet count after COVID-19 vaccination is important in patients historically diagnosed with ITP. Figure 1 Figure 1. Disclosures Westerweel: Pfizer: Consultancy; BMS / Celgene: Consultancy; Incyte: Consultancy; Novartis: Research Funding. Levin: Roche, Janssen, Abbvie: Other: Travel Expenses, Ad-Board. Kruip: Bayer: Honoraria, Research Funding; Daiichi Sankyo: Research Funding. Jansen: Novartis: Consultancy, Other: Travel, Accommodations, Expenses; Advisory Board Novartis: Membership on an entity's Board of Directors or advisory committees; 3SBIO, Novartis: Other: Travel, accomodations, expenses. </jats:sec

    COVID-19 vaccination in patients with immune thrombocytopenia

    No full text
    Immune thrombocytopenia (ITP) is an acquired autoimmune disorder that is characterized by low platelet count and increased bleeding risk. COVID-19 vaccination has been described as a risk factor for de novo ITP, but the effects of COVID-19 vaccination in patients with ITP are unknown. We aimed to investigate the effects of COVID-19 vaccination in patients with ITP on platelet count, bleeding complications, and ITP exacerbation (≥50% decline in platelet count, or nadir platelet count 20% decrease from baseline, or use of rescue therapy). Platelet counts in patients with ITP and healthy controls were collected immediately before and 1 and 4 weeks after the first and second vaccinations. Linear mixed-effects modeling was applied to analyze platelet counts over time. We included 218 patients with ITP (50.9% female; mean age, 55 years; and median platelet count, 106 × 109/L) and 200 healthy controls (60.0% female; mean age, 58 years; median platelet count, 256 × 109/L). Platelet counts decreased by 6.3% after vaccination. We did not observe any difference in decrease between the groups. Thirty patients with ITP (13.8%; 95% confidence interval [CI], 9.5-19.1) had an exacerbation and 5 (2.2%; 95% CI, 0.7-5.3) suffered from a bleeding event. Risk factors for ITP exacerbation were platelet count < 50 × 109/L (odds ratio [OR], 5.3; 95% CI, 2.1-13.7), ITP treatment at time of vaccination (OR, 3.4; 95% CI, 1.5-8.0), and age (OR, 0.96 per year; 95% CI, 0.94-0.99). Our study highlights the safety of COVID-19 vaccination in patients with ITP and the importance of the close monitoring of platelet counts in a subgroup of patients with ITP. Patients with ITP with exacerbation responded well on therapy

    COVID-19 vaccination in patients with immune thrombocytopenia

    Full text link
    Abstract Immune thrombocytopenia (ITP) is an acquired autoimmune disorder that is characterized by low platelet count and increased bleeding risk. COVID-19 vaccination has been described as a risk factor for de novo ITP, but the effects of COVID-19 vaccination in patients with ITP are unknown. We aimed to investigate the effects of COVID-19 vaccination in patients with ITP on platelet count, bleeding complications, and ITP exacerbation (≥50% decline in platelet count, or nadir platelet count &amp;lt; 30 × 109/L with a &amp;gt;20% decrease from baseline, or use of rescue therapy). Platelet counts in patients with ITP and healthy controls were collected immediately before and 1 and 4 weeks after the first and second vaccinations. Linear mixed-effects modeling was applied to analyze platelet counts over time. We included 218 patients with ITP (50.9% female; mean age, 55 years; and median platelet count, 106 × 109/L) and 200 healthy controls (60.0% female; mean age, 58 years; median platelet count, 256 × 109/L). Platelet counts decreased by 6.3% after vaccination. We did not observe any difference in decrease between the groups. Thirty patients with ITP (13.8%; 95% confidence interval [CI], 9.5-19.1) had an exacerbation and 5 (2.2%; 95% CI, 0.7-5.3) suffered from a bleeding event. Risk factors for ITP exacerbation were platelet count &amp;lt; 50 × 109/L (odds ratio [OR], 5.3; 95% CI, 2.1-13.7), ITP treatment at time of vaccination (OR, 3.4; 95% CI, 1.5-8.0), and age (OR, 0.96 per year; 95% CI, 0.94-0.99). Our study highlights the safety of COVID-19 vaccination in patients with ITP and the importance of the close monitoring of platelet counts in a subgroup of patients with ITP. Patients with ITP with exacerbation responded well on therapy.</jats:p

    Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response

    No full text
    Patients with leukemia who receive a T cell–depleted allogeneic stem cell graft followed by postponed donor lymphocyte infusion (DLI) can experience graft-versus-leukemia (GVL) reactivity, with a lower risk of graft-versus-host disease (GVHD). Here, we have investigated the magnitude, diversity, and specificity of alloreactive CD8 T cells in patients who developed GVL reactivity after DLI in the absence or presence of GVHD. We observed a lower magnitude and diversity of CD8 T cells for minor histocompatibility antigens (MiHAs) in patients with selective GVL reactivity without GVHD. Furthermore, we demonstrated that MiHA-specific T cell clones from patients with selective GVL reactivity showed lower reactivity against nonhematopoietic cells, even when pretreated with inflammatory cytokines. Expression analysis of MiHA-encoding genes showed that similar types of antigens were recognized in both patient groups, but in patients who developed GVHD, T cell reactivity was skewed to target broadly expressed MiHAs. As an inflammatory environment can render nonhematopoietic cells susceptible to T cell recognition, prevention of such circumstances favors induction of selective GVL reactivity without development of GVHD
    corecore