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ABSTRACT 

 

This paper presents a parametric modeling of a magneto-rheological (MR) damper 

using a Particle Swarm Optimization (PSO) method. The objective of this paper is to 

optimize the parameter values of the MR fluid damper behavior using the Bouc-Wen 

model. The parametric identification was imposed beforehand in replicating the 

behavior of the MR fluid damper. The algebraic function from a number of hysteresis 

models was steered by comparing selected models: Bingham, Bouc-Wen and Bouc-

Wen by Kwok. A simulation method was operated in investigating these models by 

employing MATLAB reliant from the model intricacy. The experimental data was 

presented in terms of the time histories of the displacement, the velocity and the force 

parameters, measured for both constant and variable current settings and at a selected 

frequency applied to the damper. The model parameters were determined using a set of 

experimental measurements corresponding to different current constant values.  It has 

been shown that the MR damper model’s response via the proposed approach is in good 

agreement with the MR damper test rig counterpart.  
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INTRODUCTION 

 

The application of semi-active suspension throughout the decades has shown promising 

potential, predominantly based on its stability and robust nature for controlling exerted 

vibrations, particularly in automotives [1]. Hence the important role of the damper in 

influencing vibration. Magneto-rheological (MR) fluid is reported to be a smart material 

that is able to alter its resistivity with pertinent operation. In spite of the adaptability of 

the MR fluid damper, the complexity of modeling its behavior has been a subject of 

scrutiny ever since. The MR fluid damper is a semi-active control device that alters its 

viscosity once magnetized [2, 3]. The MR fluid consists of oil and a substantial amount 

of iron particles. The MR damper structure is shown in Figure 1. The MR fluid is 

lodged in the damper cylinder which allows it to flow through the orifices. 

Magnetisable particles submerged in the fluid actuate the MR damper. This is due to the 

magnetic field supplied from the magnetic choke prior to current supply, which as a 

consequence aligns the particles in chain-like structures perpendicular to the fluid flow 

[4]. Subsequently, the physical characteristics of the MR fluid are determined by the 

input current which controls the viscosity as the fluid changes to semi-solid form [5]. 
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Figure 1. MR damper schematic. 

 

 Effective control of an MR damper mainly depends on understanding its non-

linear hysteretic behavior under an applied magnetic field. Therefore, the development 

of the distinct features and consider the non-linear behavior of the MR damper 

mechanism, this damper behavior was the extension of previous work [6]. The existing 

models can be categorized into two separate parametric and non-parametric groups. 

Non-parametric models are able to model the MR damper behavior in such a way that 

the model parameters do not illustrate the physical connections of the body [7]. 

Modeling an MR fluid damper which consists of various non-linear properties is a 

complicated phenomenon associated with a hysteresis system. A non-linear system can 

be characterized by implementing a memory feature. Both the instantaneous input and 

its preceding data contribute to the output value for a specific given time. The 

enactment of a hysteresis system does not respond proportionately but instead differs 

from the forces applied. This component offers high flexibility in a wide range of 

engineering applications. Both mathematical and non-mathematical approaches have 

been seen in various MR damper modeling publications [8, 9]. These can be listed in 

two separate categories for modeling the dynamic behavior of MR dampers through 

either parametric or non-parametric identification techniques. Parametric techniques 

represent the mechanical scheme by an arrangement of physical qualities and its 

elements of a spring and viscous dashpot [10]. The Bouc-Wen model is an example of a 

parametric identification technique. It is done by curve fitting of experimental results 

from optimizing the parameters from the Bouc-Wen model as a semi-empirical 

relationship. On the other hand, the primary relationship of the input-output system 

model is not conjectured in a non-parametric identification technique. From a given 

arbitrary input, the succeeding prediction of the systems is enabled, subsequently 

identifying the prominent values of the input/output data to be stored. Parametric 

techniques are based on mechanical principles including interpretation by arranging 

springs and dashpots. Non-parametric techniques are used for direct dynamic modeling 

prediction of the output for given inputs. Although the non-parametric models can 

efficiently depict the MR damper behavior, the complexity in validation is taxing, with 

massive amounts of data required for validation. Table 1 classifies the identification 

methods with sub-division of the parametric models. 
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 Table 1. Parametric identification classification. 

 

Parametric Non-parametric 

Evolutionary model Algebraic model 

General Bouc-Wen (BW) 

Modified Bouc-Wen 

Voltage-dependent modified 

Bouc-Wen 

Modified Dahl model 

Modified Lugre Friction 

model 

Bingham 

Bouc-Wen (Kwok) 

Modified algebraic 

model (Guo and Hu) 

- 

- 

Chebyshev polynomials 

Neural networks 

Neuro-fuzzy 

 

- 

- 

 

 In furtherance of imitating the MR fluid damper, the Particle Swarm 

Optimization (PSO) method was introduced to enhance the parameter search for 

identification. The concept of PSO emulates the social behavior of wildlife interaction 

primarily in a clustered movement, for instance in a flock of birds or swarm of ants. The 

collaboration between Kennedy and Eberhart in [11] led to this renowned optimization 

method which has been seen in diverse applications ever since [12]. Subsequent to the 

motion of these groups, the social behavior analogy is used to acquire the best 

parameter value; for instance, a flock of birds looking for a source of food in a 

randomized formation until one bird locates food at a position which is then predicted 

as an optimized position. This analogy is then applied to the hysteresis model to locate 

the best possible value in imitation of the MR fluid damper characteristics. 

Identification techniques are used to model the MR fluid damper to replicate its 

practical behavior and are categorized as either parametric or non-parametric.  The 

objective of this paper is parametric modeling of the MR fluid damper using  the Bouc-

Wen hysteresis model proposed by Kwok [13], which is capable of being optimized by 

using the advocated PSO algorithm. 

 

EXPERIMENTAL SETUP 

 

Design of Experiment 

 

An original shock absorber equipment was employed for orientation in developing the 

MR damper model. A Proton Waja shock absorber was selected as a reference due to its 

specifications and the unsophisticated operation sets for its assembly. However, 

installation of the MR fluid damper model in the Proton Waja model will introduce 

constraints in terms of the design, as the factors of parameters, for instance the shock 

absorber tube's diameter and stroke length, are already in place. Figure 1 provides an 

illustration of the absorber in detail.  A conventional damper mainly consists of a piston 

rod, bearing and seal, but an MR damper comprises several additional elements, 

essentially an accumulator and electromagnet. Nonetheless, an MR fluid of 

hydrocarbon-based MRF-122EG was employed in the damper cylinder with the purpose 

of implying an electromagnetic behavior on the damper. The MR fluid damper is shown 

in Figure 2. 
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Figure 2. MR fluid damper assembly. 

 

As for the performance of the damper, Figure 3 below illustrates the force 

against velocity for the original equipment. The performance of this damper is used as a 

point of reference in designing the MR damper. This was tested using a material testing 

system (MTS) machine. An evaluation method was exploited to gauge the differences 

between the experimental and simulated data. A basic scheme for the justifying the 

measurement is illustrated in Figure 4 below. Firstly, the input data (collected from the 

experiment) is submitted into a Synthesize program for evaluation with the 

programming code.  

 
 

Figure 3. Force–velocity plot of original Proton Waja absorber. 
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Figure 4. Error comparison gauge measurement. 

 

 The hysteresis models were incorporated into the synthesize program 

beforehand in order to clarify significant parameters that required optimization prior to 

disparity investigation with the experimental data. After altering the relevant 

parameters, PSO was applied to enhance the performance of the simulated hysteresis 

graph and compare it to the input data. Then, an evaluation was made to ensure that the 

error between the input data and the resultant optimized result was satisfactory. The 

performance of the proposed Bouc-Wen model modified by Kwok was justified by 

comparing it to the Bingham and original Bouc-Wen models. 

 

MATHEMATICAL MODELING 

 

The model proposed by Kwok uses the hyperbolic tangent function to embody the 

mechanical character of viscosity and stiffness corresponding to hysteresis and linear 

functions. The equations used are as below [13]: 

 

𝐹 = 𝑐𝑥̇ + 𝑘𝑥 + 𝛼𝑧 + 𝑓0       (1) 

 

 z  = tanh [ βẋ + δsgn(x) ]         (2) 

 

where z is identical to the other model’s operation except for the introduction of a 

hyperbolic tangent function, and the offset of the damper is the parameter f0. 𝑐, 𝑘, 𝛼, 𝛿, 

𝛽,and 𝛾 are model parameters to be identified, f is the damping force, c and k are the 

viscosity and stiffness coefficient respectively. 

 Kwok [13] claims that the model offers efficiency in computational execution 

for parameter identification, such that carrying out the controller design is placid from 

the hyperbolic tangent function.  

 

PARTICLE SWARM OPTIMIZATION 

 

The concept of particle swarm optimization (PSO) was originally introduced by 

Kennedy and Eberhart in 1995 [11] as a technique for individual improvement through 

population cooperation and competition, which is based on the simulation of a 

simplified social model, such as bird flocking, fish schooling and the swarm theory. Its 

mechanism enhances and adapts to the global and local exploration. Some of the key 

advantages are that this method does not require the calculation of derivatives, that the 

knowledge of good solutions is retained by all particles, and that these particles in the 
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swarm share information between them. PSO is less sensitive to the nature of the 

objective function, can be used for stochastic objective functions and can easily escape 

from local minima. Concerning its implementation, PSO can easily be programmed, has 

few parameters to regulate, and the assessment of the optimum is independent of the 

initial solution. Nowadays, PSO has gained much attention and wide application in 

various fields. The basic PSO algorithm consists of three steps, namely, generating 

particles’ positions and velocities, velocity update, and position update. Here, a particle 

refers to a point in the design space that changes its position from one move (iteration) 

to another based on velocity updates. First, the positions, i
kx  , and velocities, i

kv  , of the 

initial swarm of particles are randomly generated using upper and lower bounds on the 

design variables values, minx  and maxx  , as expressed in Eqs. (.3) and (4) . 

 

)( minmaxmin0 xxrandxxi 
           (.3) 

t

xxrandx
vi






)(

time

position minmaxmin
0

           (4) 

 

 A uniformly distributed random variable, rand, is valued from 0 to 1. The vector 

format is translated to describe the velocity and position denoted by the ith particle at 

given time k. The best global value, p
k

g
, is determined from the fitness function value of 

a particle in the running swarm. Hence, the best position pbest is selected from each 

particle and correlated with all previous groups for the best global gbest. In Eq. (5), a 

summation mode is applied to reposition the direction of the combining swarm’s 

influence, the particles' memory and current motion. Consequently, Eq. (.6) explains the 

velocity vector which is applied to update the position of the particle. 
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RESULTS AND DISCUSSION 

 

The MR fluid damper was developed and employed on the test rig. Hardware 

integration was successfully done and extracted to DAQ and saved as experimental 

results. The conditions of the experimental test were evaluated under a set of 

assessments as measured earlier. Then, a comparison with a noteworthy hysteresis 

model was performed to obtain and justify the selected model for this research. An 

elementary statistical analysis is presented to unveil the resolution for the nominated 

models. Once the selection is fulfilled, the various test conditions for the selected model 

are illustrated, comparing the experimental and simulated data. Next, a thorough 

analysis of the marginal and percentile error was conducted to enhance the declaration 

of the best optimized hysteresis model. The parameter values are examined to extend 

the understanding of significant changes that lead to formation of the curve. Table 2 

presents the respective findings, with the test conditions input.  
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Table 2. Mean of parametric models force error (N). 

 

Test condition 

Current input (A) 

Parametric model error (N) 

Bingham Bouc-Wen Bouc-Wen/Kwok 

0.0 35.917 20.094 5.452 

0.5 87.068 30.752 20.601 

1.0 110.347 75.829 18.142 

1.5 139.181 119.175 23.013 

2.0 182.453 150.557 33.201 

Mean average 110.993 79.281 20.082 

  

Trends of rising force error are observed for all models as the current input ascends. The 

largest increment is clearly distinguished from the Bingham model in the range of 30 N 

to 50 N as the test input extends. With a mean average of 111 N, the Bingham model 

was found to be an unsuitable form for replicating the MR fluid damper behavior. The 

Bouc-Wen model, on the other hand, demonstrates slight improvements in the marginal 

error, with impartial results of 79.3 N. Nonetheless, this irregular outcome is still 

inconsistent in parameter identification. Ultimately, the Bouc-Wen model by Kwok  

[13] presents an astounding inference on MR fluid damper performance. The 

divergences between the test conditions were minimal, with less than 15 N and a 

significant mean average of 20.1 N marginal error. The initial step in the experiments is 

to apply a current input of 0.0 A. The behavior is comparable to a passive damper due to 

zero current exerted, so the MR fluid acts as a typical fluid damper, excluding the 

resistive force by unmagnetized particles. Figure 5 represents the findings using the 

Bouc-Wen model, making it possible to scrutinize how far the simulation data achieves 

the measured value. The respective figures are assigned in arrays as shown in Figure 5. 

From Figure 5(b) and (c), it can be judged to what extent the data relates to the 

corresponding hysteresis model. To support the findings, the marginal error in terms of 

force is shown in Figure 5(d). In this manner, inspection of the findings is performed in 

parallel for a straightforward verdict. Taken as a whole, the response evidenced from 

the test condition at 0.0 A presents credible results and is indicative of  a decisive model 

for parametric identification.  

 In general, all of the results from the test conditions forecast by using the Bouc-

Wen model by Kwok were satisfactory, despite having a minor setback that was 

insignificant with respect to the MR fluid damper characteristics. As an alternative, 

supplementary analysis was undertaken to commit to a final verdict on verifying the 

parametric model as a substitute for modeling the MR fluid damper. The consequence 

of these results was mainly founded on the parameter values, and the indices are list in 

Table 3. It is shown that the comparison of existing parametric models using the 

proposed Bouc-Wen model modified by Kwok et al. [13] and performed by computer 

simulation. The selected model is optimized by imposing the PSO algorithm in order to 

assign the significant parameters into the best fitting model with respect to the MR fluid 

damper. The analysis reveals that the average percentage error for the simulation to 

depict the MR fluid damper’s behavior is approximately 6.0% to 8.3% marginal error. 

This estimation is presumed to be satisfactory, recognizing the fact that several 

constraints were unavoidable during the process of this research. 
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Figure 5. Data comparison of Bouc-Wen/Kwok model for 0.0 A 

 

Table 3. Parameter values for various test conditions of Bouc-Wen/Kwok model 

 

 Test current conditions (A) 

Parameters 0 0.5 1 1.5 2 

Viscosity coefficient, c -19.03 20.07 160.75 956.04 1092.49 

Stiffness coefficient, k 25.51 -321.96 4.21 1453.66 13.55 

Scaling factor of 

hysteresis, 𝛼 
142.85 333.96 463.38 445.53 658.72 

Damper force offset, f0 9.10 36.71 28.93 -2.60 -3.36 

Hysteresis parameter, β 7.38 6.41 5.83 5.60 5.28 

Hysteresis parameter, δ 0.52 0.59 0.47 0.50 0.53 

 

CONCLUSIONS 

 

An alternative approach to the parametric modeling of an MR damper using the PSO 

method has been presented and successfully applied. By using the experimental test rig 

data, the non-linear characteristics of the MR damper can be captured without having to 

resort to its dynamic model (equations of motion). The PSO model responses and the 

actual test rig outputs are almost identical, which implies that the PSO model has 
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captured the real MR damper characteristics. Further rigorous investigation should be 

carried out to evaluate the proposed model’s performance compared with other 

methods. The results of this study can also be used as a basis to design a more complex 

semi-active suspension control system involving intelligent methods.  
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