47 research outputs found

    Ambient pressure X-ray photoelectron spectroscopy study of room-temperature oxygen adsorption on Cu(1 0 0) and Cu(1 1 1)

    Get PDF
    We investigated the room-temperature chemisorption of oxygen on Cu(100) and Cu(111) using ambient-pressure X-ray photoelectron spectroscopy (APXPS). A shoulder-to-shoulder comparison between the oxygen-gas titration on the two surfaces reveals that Cu(100) is the more active for oxygen dissociative chemisorption when the surfaces are clean. The (2 root 2 x root 2)R45 degrees missing-row reconstruction appears in Cu(100)'s LEED image after about 10(4) Langmuir of oxygen exposure, whereas on Cu(111), no long-range ordering was observed throughout the whole experiment. An oxide layer consisting of cuprous and cupric oxide shows up on Cu(111) at an oxygen exposure that is significantly lower than for Cu(100). This observation suggests that the presence of (2 root 2 x root 2)R45 degrees missing-row reconstruction layer slows down Cu(100) oxidation. Literature has widely reported that surface morphology influences the copper oxidation process. This study provides an XPS demonstration that copper surface oxide formation in O-2 at room temperature depends on the surface crystallographic orientation

    Removal and Reoccurrence of LLZTO Surface Contaminants under Glovebox Conditions

    Get PDF
    The reactivity of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolytes to form lithio-phobic species such as Li2CO3 on their surface when exposed to trace amounts of H2O and CO2 limits the progress of LLZTO-based solid-state batteries. Various treatments, such as annealing LLZTO within a glovebox or acid etching, aim at removing the surface contaminants, but a comprehensive understanding of the evolving LLZTO surface chemistry during and after these treatments is lacking. Here, glovebox-like H2O and CO2 conditions were recreated in a near ambient pressure X-ray photoelectron spectroscopy chamber to analyze the LLZTO surface under realistic conditions. We find that annealing LLZTO at 600 °C in this atmosphere effectively removes the surface contaminants, but a significant level of contamination reappears upon cooling down. In contrast, HCl(aq) acid etching demonstrates superior Li2CO3 removal and stable surface chemistry post treatment. To avoid air exposure during the acid treatment, an anhydrous HCl solution in diethyl ether was used directly within the glovebox. This novel acid etching strategy delivers the lowest lithium/LLZTO interfacial resistance and the highest critical current density

    Observing the oxidation of platinum

    No full text
    corecore