130 research outputs found
Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: Application to acetaminophen injury
International audienceWe have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite. N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treated biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology
Zonation related function and ubiquitination regulation in human hepatocellular carcinoma cells in dynamic vs. static culture conditions
<p>Abstract</p> <p>Background</p> <p>Understanding hepatic zonation is important both for liver physiology and pathology. There is currently no effective systemic chemotherapy for human hepatocellular carcinoma (HCC) and its pathogenesis is of special interest. Genomic and proteomic data of HCC cells in different culture models, coupled to pathway-based analysis, can help identify HCC-related gene and pathway dysfunctions.</p> <p>Results</p> <p>We identified zonation-related expression profiles contributing to selective phenotypes of HCC, by integrating relevant experimental observations through gene set enrichment analysis (GSEA). Analysis was based on gene and protein expression data measured on a human HCC cell line (HepG2/C3A) in two culture conditions: dynamic microfluidic biochips and static Petri dishes. Metabolic activity (HCC-related cytochromes P450) and genetic information processing were dominant in the dynamic cultures, in contrast to kinase signaling and cancer-specific profiles in static cultures. That, together with analysis of the published literature, leads us to propose that biochips culture conditions induce a periportal-like hepatocyte phenotype while standard plates cultures are more representative of a perivenous-like phenotype. Both proteomic data and GSEA results further reveal distinct ubiquitin-mediated protein regulation in the two culture conditions.</p> <p>Conclusions</p> <p>Pathways analysis, using gene and protein expression data from two cell culture models, confirmed specific human HCC phenotypes with regard to CYPs and kinases, and revealed a zonation-related pattern of expression. Ubiquitin-mediated regulation mechanism gives plausible explanations of our findings. Altogether, our results suggest that strategies aimed at inhibiting activated kinases and signaling pathways may lead to enhanced metabolism-mediated drug resistance of treated tumors. If that were the case, mitigating inhibition or targeting inactive forms of kinases would be an alternative.</p
Non-congenital severe ocular complications of Zika virus infection
In 2016, during a major Zika virus (ZIKV) outbreak in Maracaibo, Venezuela, a 49-year-old woman and an unrelated 4-year-old boy developed bilateral optic neuritis 2–3 weeks after presenting an acute febrile illness characterized by low-grade fever, rash and myalgia [1]. Both patients presented sudden, painless bilateral loss of vision with no corneal or uveal abnormalities. Fundoscopic examination revealed oedema of the optic nerve and optic disc pallor. Optical coherence tomography confirmed bilateral optic nerve head swelling in the case of the adult, but it was not carried out in the child. Automated perimetry performed in the adult revealed bilateral diffuse visual field loss. Magnetic resonance imaging of the brain in both cases was unremarkable. Both patients were diagnosed with bilateral optic neuritis of possible infectious or parainfectious origin. Differential diagnoses that were considered and subsequently discarded included arteritic and non-arteritic ischaemic optic neuropathy, and brain disorders such as multiple sclerosis and brain tumours. Both patients were seropositive for anti-ZIKV IgG and seronegative for anti-ZIKV IgM. In addition, both patients were positive for anti-dengue virus (DENV) IgG for all four DENV serotypes. Management included intravenous methylprednisolone for 3 days, followed by oral prednisolone for 11 days. Although the patients presented a modest improvement in their vision, they continued to have visual impairment after several months of follow-up [1]
Untargeted metagenomic sequencing identifies Toscana virus in patients with idiopathic meningitis, southern Spain, 2015 to 2019
Background: Various pathogens, including bacteria, fungi, parasites, and viruses can lead to meningitis. Among viruses causing meningitis, Toscana virus (TOSV), a phlebovirus, is transmitted through sandfly bites. TOSV infection may be suspected if patients with enterovirus- and herpesvirus-negative aseptic (non-bacterial) meningitis recall recent insect bites. Other epidemiological factors (season, rural area) may be considered. The broad range of possible meningitis aetiologies poses considerable diagnosis challenges. Untargeted metagenomic next-generation sequencing (mNGS) can potentially identify pathogens, which are not considered or detected in routine diagnostic panels. Aim: In this retrospective, single-centre observational study, we investigated mNGS usefulness to understand the cause of meningitis when conventional approaches fail. Methods: Cerebrospinal fluid (CSF) samples from patients hospitalised in southern Spain in 2015-2019 with aseptic meningitis and no aetiology found by conventional testing, were subjected to mNGS. Patients' demographic characteristics had been recorded and physicians had asked them about recent insect bites. Obtained viral genome sequences were phylogenetically analysed. Results: Among 23 idiopathic cases, TOSV was identified in eight (all male; median age: 39 years, range: 15-78 years). Five cases lived in an urban setting, three occurred in autumn and only one recalled insect bites. Phylogenetic analysis of TOSV segment sequences supported one intra-genotype reassortment event. Conclusions: Our study highlights the usefulness of mNGS for identifying viral pathogens directly in CSF. In southern Spain, TOSV should be considered regardless of recalling of insect bites or other epidemiological criteria. Detection of a disease-associated reassortant TOSV emphasises the importance of monitoring the spread and evolution of phleboviruses in Mediterranean countries.ESL laboratory received funding from Institut Pasteur, from the INCEPTION programme (Investissements d’Avenir grant ANR-16-CONV-0005), from the NIH PICREID program (Award Number U01AI151758) and from the Labex IBEID (ANR-10-LABX-62-IBEID). MDFG acknowledges funding from the Junta de Andalucia (PI-0216-2019) and Instituto de Salud Carlos III (Acción Estratégica en Salud Intramural PI20CIII/00005).S
Optic neuropathy and congenital glaucoma associated with probable Zika virus infection in Venezuelan patients
Introduction: Although the current Zika virus (ZIKV) epidemic is a major public health concern, most reports have focused on congenital ZIKV syndrome, its most devastating manifestation. Severe ocular complications associated with ZIKV infections and possible pathogenetic factors are rarely described. Here, we describe three Venezuelan patients who developed severe ocular manifestations following ZIKV infections. We also analyse their serological response to ZIKV and dengue virus (DENV).
Case presentation: One adult with bilateral optic neuritis, a child of 4 years of age with retrobulbar neuritis [corrected]. and a newborn with bilateral congenital glaucoma had a recent history of an acute exanthematous infection consistent with ZIKV infection. The results of ELISA tests indicated that all patients were seropositive for ZIKV and four DENV serotypes.
Conclusion: Patients with ZIKV infection can develop severe ocular complications. Anti-DENV antibodies from previous infections could play a role in the pathogenesis of these complications. Well-designed epidemiological studies are urgently needed to measure the risk of ZIKV ocular complications and confirm whether they are associated with the presence of anti-flaviviral antibodies
Integrated Proteomic and Transcriptomic Investigation of the Acetaminophen Toxicity in Liver Microfluidic Biochip
Microfluidic bioartificial organs allow the reproduction of in vivo-like properties such as cell culture in a 3D dynamical micro environment. In this work, we established a method and a protocol for performing a toxicogenomic analysis of HepG2/C3A cultivated in a microfluidic biochip. Transcriptomic and proteomic analyses have shown the induction of the NRF2 pathway and the related drug metabolism pathways when the HepG2/C3A cells were cultivated in the biochip. The induction of those pathways in the biochip enhanced the metabolism of the N-acetyl-p-aminophenol drug (acetaminophen-APAP) when compared to Petri cultures. Thus, we observed 50% growth inhibition of cell proliferation at 1 mM in the biochip, which appeared similar to human plasmatic toxic concentrations reported at 2 mM. The metabolic signature of APAP toxicity in the biochip showed similar biomarkers as those reported in vivo, such as the calcium homeostasis, lipid metabolism and reorganization of the cytoskeleton, at the transcriptome and proteome levels (which was not the case in Petri dishes). These results demonstrate a specific molecular signature for acetaminophen at transcriptomic and proteomic levels closed to situations found in vivo. Interestingly, a common component of the signature of the APAP molecule was identified in Petri and biochip cultures via the perturbations of the DNA replication and cell cycle. These findings provide an important insight into the use of microfluidic biochips as new tools in biomarker research in pharmaceutical drug studies and predictive toxicity investigations
The Current Status of Alternatives to Animal Testing and Predictive Toxicology Methods Using Liver Microfluidic Biochips
Validation d'un microsystème hépatique dédié aux études pharmaco-toxicologiques
COMPIEGNE-BU (601592101) / SudocSudocFranceF
Behavior of HepG2/C3A cell cultures in a microfluidic bioreactor
International audienceAn important issue in toxicity studies is the development of pertinent new in vitro tests that will be able to provide an alternative to in vivo testing methods. Current developments in the fields of tissue engineering and microtechnology make it possible to propose the use of microfluidic bioreactors as a tool for enhanced in vitro investigations. However, both the cells' behavior in complex environments and their response to chemicals need to be better understood, especially for future validation of any new assay. To characterize the sensitivity of this approach, we investigated the behavior of a liver cell model with respect to variations of two cell culture parameters in a microfluidic bioreactor: inoculated cell density (0.35x106, 0.45x106 and 0.65x106 cells/bioreactor) and microfluidic flow rates (0, 10 and 25µL/min). We also investigated an environmental pollutant modeled with three ammonia concentrations (0, 5 and 10mM). Proliferation in the bioreactor was found to be flow rate and inoculated cell density dependent. This led to a mean value of 1.2±0.2x106 cells in the 3D microenvironment of the bioreactor without ammonia loadings after 96h of cultures. Cell metabolism rates, such as glucose and glutamine consumption or CYP1A detoxification, were found to be higher in dynamic conditions than in static conditions. Furthermore, increased ammonium chloride concentration in turn increased glucose and glutamine consumptions and CYP1A activity. Inhibition of 50% of cell proliferation (IC50) during the ammonium chloride analysis was found at 5mM when cell concentrations of 0.35x106 cells/bioreactor were inoculated. In contrast, no effect could be detected at 5mM for larger cell densities of 0.65x106 cells/bioreactor, demonstrating concentration and cell density dependence in the bioreactors. This study highlighted the sensitivity of the HepG2/C3A cells to microfluidic culture conditions and illustrated the potential for larger in vitro toxicity studies using microfluidic bioreactors
- …
