133 research outputs found

    Current Surgical Treatment of Knee Osteoarthritis

    Get PDF
    Osteoathritis (OA) of the knee is common, and the chances of suffering from OA increase with age. Its treatment should be initially nonoperative—and requires both pharmacological and nonpharmacological treatment modalities. If conservative therapy fails, surgery should be considered. Surgical treatments for knee OA include arthroscopy, cartilage repair, osteotomy, and knee arthroplasty. Determining which of these procedures is most appropriate depends on several factors, including the location, stage of OA, comorbidities on the one side and patients suffering on the other side. Arthroscopic lavage and débridement is often carried out, but does not alter disease progression. If OA is limited to one compartment, unicompartmental knee arthroplasty or unloading osteotomy can be considered. They are recommended in young and active patients in regard to the risks and limited durability of total knee replacement. Total arthroplasty of the knee is a common and safe method in the elderly patients with advanced knee OA. This paper summarizes current surgical treatment strategies for knee OA, with a focus on the latest developments, indications and level of evidence

    Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16

    Get PDF
    The 2015/16 Northern Hemisphere winter season was marked by peculiarities in the circulation pattern in the high-latitude mesopause region. Wind measurements from the Andenes (69° N, 13° E) meteor radar show westward winds below 84 km and eastward winds above. This wind pattern in the zonal wind was observable between the end of December 2015 and the end of January 2016, i.e., conditions that are typical for the summer were found during winter. Additional meteor radar measurements at midlatitude stations did not show such a zonal wind reversal but indicate, together with the polar latitude stations, a reversal of the horizontal temperature gradient. This is confirmed by global satellite measurements. Therefore, it is plausible that the polar latitude summer-like zonal wind reversal in December–January is in accordance with the reversed horizontal temperature gradient assuming a thermal wind balance between mid- and polar latitudes. The reversed horizontal temperature gradient itself is induced by stationary planetary waves at lower and midlatitudes in the mesosphere, leading to a weakening of the residual circulation above the European sector

    Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16

    Get PDF
    The 2015/16 Northern Hemisphere winter season was marked by peculiarities in the circulation pattern in the high-latitude mesopause region. Wind measurements from the Andenes (69° N, 13° E) meteor radar show westward winds below 84 km and eastward winds above. This wind pattern in the zonal wind was observable between the end of December 2015 and the end of January 2016, i.e., conditions that are typical for the summer were found during winter. Additional meteor radar measurements at midlatitude stations did not show such a zonal wind reversal but indicate, together with the polar latitude stations, a reversal of the horizontal temperature gradient. This is confirmed by global satellite measurements. Therefore, it is plausible that the polar latitude summer-like zonal wind reversal in December–January is in accordance with the reversed horizontal temperature gradient assuming a thermal wind balance between mid- and polar latitudes. The reversed horizontal temperature gradient itself is induced by stationary planetary waves at lower and midlatitudes in the mesosphere, leading to a weakening of the residual circulation above the European sector

    Epidemiology and Comorbidity in Children with Psoriasis and Atopic Eczema

    Get PDF
    Background First studies have shown that juvenile psoriasis is associated with an increased prevalence of comorbidity. Objectives We carried out a data analysis to characterise the profiles of comorbidity in children with psoriasis and atopic eczema. Methods Prevalence data were derived from the database of a German statutory health insurance company according to ICD-10 codes L40 (psoriasis) and L20 (atopic eczema) of children up to 18 years insured in 2009. Results Data sets included 1.64 million persons and 293,181 children. 1,313 children = 0.45% (0.42-0.47) had a diagnosis of psoriasis and 30,354 = 10.35% (10.24-10.47) had a diagnosis of atopic eczema. Obesity, hyperlipidaemia, arterial hypertension and diabetes were more often diagnosed in children with psoriasis in comparison to all children without psoriasis and to those with atopic eczema. Conclusion Children with psoriasis and atopic eczema show different and specific patterns of comorbidity which should be detected early and treated adequately

    Connection between the length of day and wind measurements in the mesosphere and lower thermosphere at mid- and high latitudes

    Get PDF
    This work presents a connection between the density variation within the mesosphere and lower thermosphere (MLT) and changes in the intensity of solar radiation. On a seasonal timescale, these changes take place due to the revolution of the Earth around the Sun. While the Earth, during the northern-hemispheric (NH) winter, is closer to the Sun, the upper mesosphere expands due to an increased radiation intensity, which results in changes in density at these heights. These density variations, i.e., a vertical redistribution of atmospheric mass, have an effect on the rotation rate of Earth's upper atmosphere owing to angular momentum conservation. In order to test this effect, we applied a theoretical model, which shows a decrease in the atmospheric rotation speed of about ∼4&thinsp;m&thinsp;s−1 at a latitude of 45∘ in the case of a density change of 1&thinsp;% between 70 and 100&thinsp;km. To support this statement, we compare the wind variability obtained from meteor radar (MR) and Microwave Limb Sounder (MLS) satellite observations with fluctuations in the length of a day (LOD). Changes in the LOD on timescales of a year and less are primarily driven by tropospheric large-scale geophysical processes and their impact on the Earth's rotation. A global increase in lower-atmospheric eastward-directed winds leads, due to friction with the Earth's surface, to an acceleration of the Earth's rotation by up to a few milliseconds per rotation. The LOD shows an increase during northern winter and decreases during summer, which corresponds to changes in the MLT density due to the Earth–Sun movement. Within the MLT the mean zonal wind shows similar fluctuations to the LOD on annual scales as well as longer time series, which are connected to the seasonal wind regime as well as to density changes excited by variations in the solar radiation. A direct correlation between the local measured winds and the LOD on shorter timescales cannot clearly be identified, due to stronger influences of other natural oscillations on the wind. Further, we show that, even after removing the seasonal and 11-year solar cycle variations, the mean zonal wind and the LOD are connected by analyzing long-term tendencies for the years 2005–2016.</p
    corecore