43 research outputs found

    Light-induced magnetization reversal of high-anisotropy TbCo alloy films

    Full text link
    Magnetization reversal using circularly polarized light provides a new way to control magnetization without any external magnetic field and has the potential to revolutionize magnetic data storage. However, in order to reach ultra-high density data storage, high anisotropy media providing thermal stability are needed. Here, we evidence all-optical magnetization switching for different TbxCo1-x ferrimagnetic alloy composition and demonstrate all-optical switching for films with anisotropy fields reaching 6 T corresponding to anisotropy constants of 3x106 ergs/cm3. Optical magnetization switching is observed only for alloys which compensation temperature can be reached through sample heating

    Integrating sense of place in planning and management of multifunctional river landscapes: experiences from five European case studies

    Get PDF
    River landscapes are complex social-ecological systems with many benefts for people. A common challenge is to integrate social values in river planning and management. In particular, there is a paucity of research on the meaning and signifcance of place in river recreation and how people feel emotionally and spiritually connected to river landscapes. Based on fve European case studies, this study compares diferent methods and approaches for mapping sense of place in river landscapes and subsequently addresses the question of how these studies can inform participatory processes. The case studies are set in diverse geographical, institutional and policy contexts, including the planning and evaluation of river restoration projects in Switzerland, Denmark, Germany and Spain and the monitoring of the efects of newly constructed river dams in the Netherlands. This comparative study is a frst step in understanding the breadth of analytical and spatial approaches that can be used to assess sense of place in river landscapes and their implications for resilient river landscape planning and management

    The role of open innovation in biomarker discovery

    Get PDF
    Precision medicine aims to treat diseases with special consideration for the individual biological variability. Novel biomarkers (BM) are needed to predict therapeutic responses and to allow for the selection of suitable patients for treatment with certain drugs. However, the identification and validation of appropriate BMs is challenging. Close col-laboration between different partners seems to be a key success factor. While the importance of partnerships and larger, well-established consortia in BM discovery such as the pharmaceutical industry and academic institutions is well un-derstood and has been investigated in the past, the use of open-innovation models, also known as ‘crowd sourcing for biomarkers’, is still in its infancy. Crowd sourcing comprises of a —usually via internet— request for problem solution to an open group of users in a kind of an ‘open call’. The community (crowd) is asked to provide solutions. Since the application of the crowd sourcing method offers the possibility to collect as many as possible novel ideas from a broad community with different expertise, this approach is particularly promising for BM development. In this article we de-scribe the first examples of open-innovation models, such as the ‘grants for targets’ (G4T) and biomarkers initiative ‘InnoCentive’ (innovation/incentive) platform. They may be a fruitful basis for collaborative BM development in the future

    Tracking protein function with sodium multi quantum spectroscopy in a 3D-tissue culture based on microcavity arrays

    Get PDF
    The aim of this study was to observe the effects of strophanthin induced inhibition of the Na-/KATPase in liver cells using a magnetic resonance (MR) compatible bioreactor. A microcavity array with a high density three-dimensional cell culture served as a functional magnetic resonance imaging (MRI) phantom for sodium multi quantum (MQ) spectroscopy. Direct contrast enhanced (DCE) MRI revealed the homogenous distribution of biochemical substances inside the bioreactor. NMR experiments using advanced bioreactors have advantages with respect to having full control over a variety of physiological parameters such as temperature, gas composition and fluid flow. Simultaneous detection of single quantum (SQ) and triple quantum (TQ) MR signals improves accuracy and was achieved by application of a pulse sequence with a time proportional phase increment (TQTPPI). The time course of the Na-/KATPase inhibition in the cell culture was demonstrated by the corresponding alterations of sodium TQ/ SQ MR signals

    3D Cultivation Techniques for Primary Human Hepatocytes

    Get PDF
    One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device

    3D Cultivation Techniques for Primary Human Hepatocytes

    Get PDF
    One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly devic

    Collaboration for success: the value of strategic col-laborations for precision medicine and biomarker discovery

    Get PDF
    Precision medicine aims to provide the precise treatment for the patient with the right dose at the right point of time. Biomarkers (BM) are vital for the identification of patients who would benefit the most from individualized treatment. In addition, they help to enable the prediction of prognosis, the detection of early therapeutic and adverse effects, and may serve as surrogate endpoints in clinical trials. BM are becoming essential tools to increase productivity in drug discovery and impressively enhance the way medicine is practiced. However, the identification, sufficient validation and implementation of such BM are challenging. This process requires expertise from different areas and high resource investments. Collaborations of different partners may be helpful to overcome these challenges. In the past decade, collaborations between diagnostics and pharmaceutical companies as well as industrial–academic collaborations have been increasingly pursued. Moreover, public funding may offer support and open new opportunities to form such consortia. Herein we give an overview of the different types of collaborations, their opportunities and challenges, and describe experiences in forming strategic partnerships with other companies

    MOF‐Hosted Enzymes for Continuous Flow Catalysis in Aqueous and Organic Solvents

    Get PDF
    Fully exploiting the potential of enzymes in cell-free biocatalysis requires stabilization of the catalytically active proteins and their integration into efficient reactor systems. Although in recent years initial steps towards the immobilization of such biomolecules in metal-organic frameworks (MOFs) have been taken, these demonstrations have been limited to batch experiments and to aqueous conditions. Here we demonstrate a MOF-based continuous flow enzyme reactor system, with high productivity and stability, which is also suitable for organic solvents. Under aqueous conditions, the stability of the enzyme was increased 30-fold, and the space-time yield exceeded that obtained with other enzyme immobilization strategies by an order of magnitude. Importantly, the infiltration of the proteins into the MOF did not require additional functionalization, thus allowing for time- and cost-efficient fabrication of the biocatalysts using label-free enzymes

    Fabrication of cell container arrays with overlaid surface topographies

    Get PDF
    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches
    corecore