4,285 research outputs found

    Lead optimisation of dehydroemetine for repositioned use in malaria

    Get PDF
    Drug repositioning offers an effective alternative to de novo drug design to tackle the urgent need for novel anti-malarial treatments. The anti-amoebic compound, emetine dihydrochloride, has been identified as a potent in-vitro inhibitor of the multi-drug resistant strain K1 of Plasmodium falciparum (IC50: 47 nM ± 2.1 nM). Dehydroemetine, a synthetic analogue of emetine dihydrochloride has been reported to have less cardiotoxic effects than emetine. The structures of two diastereomers of dehydroemetine were modelled on the published emetine binding site on cryo-EM structure 3J7A (Pf 80S ribosome in complex with emetine) and it was found that (-)-R,S-dehydroemetine mimicked the bound pose of emetine more closely than (-)-S,S-dehydroisoemetine. (-)-R,S-dehydroemetine (IC50 71.03 ± 6.1 nM) was also found to be highly potent against the multi-drug resistant K1 strain of P. falciparum in comparison with (-)-S,S-dehydroisoemetine (IC50 2.07 ± 0.26 μM), which loses its potency due to the change of configuration at C-1′. In addition to its effect on the asexual erythrocytic stages of P. falciparum, the compounds exhibited gametocidal properties with no cross-resistance against any of the multi-drug resistant strains tested. Drug interaction studies showed (-)-R,S-dehydroemetine to have synergistic antimalarial activity with atovaquone and proguanil. Emetine dihydrochloride, and (-)-R,S-dehydroemetine failed to show any inhibition of the hERG potassium channel and displayed activity on the mitochondrial membrane potential indicating a possible multi-modal mechanism of action. [Abstract copyright: Copyright © 2020 Panwar et al.

    A holistic multi-scale approach to using 3D scanning technology in accident reconstruction

    Get PDF
    Three-dimensional scanning and documentation methods are becoming increasingly employed by law enforcement personnel for crime scene and accident scene recording. Three-dimensional documentation of the victim’s body in such cases is also increasingly used as the field of forensic radiology and imaging is expanding rapidly. These scanning technologies enable a more complete and detailed documentation than standard autopsy. This was used to examine a fatal pedestrian-vehicle collision where the pedestrian was killed by a van whilst crossing the road. Two competing scenarios were considered for the vehicle speed calculation: the pedestrian being projected forward by the impact or the pedestrian being carried on the vehicle’s bonnet. In order to assist with this, the impact area of the accident vehicle was scanned using laser surface scanning, the victim was scanned using postmortem CT and micro-CT and the data sets were combined to virtually match features of the vehicle to injuries on the victim. Micro-CT revealed additional injuries not previously detected, lending support to the pedestrian-carry theory

    Flecainide exerts paradoxical effects on sodium currents and atrial arrhythmia in murine RyR2-P2328S hearts.

    Get PDF
    AIMS: Cardiac ryanodine receptor mutations are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), and some, including RyR2-P2328S, also predispose to atrial fibrillation. Recent work associates reduced atrial Nav 1.5 currents in homozygous RyR2-P2328S (RyR2(S/S) ) mice with slowed conduction and increased arrhythmogenicity. Yet clinically, and in murine models, the Nav 1.5 blocker flecainide reduces ventricular arrhythmogenicity in CPVT. We aimed to determine whether, and how, flecainide influences atrial arrhythmogenicity in RyR2(S/S) mice and their wild-type (WT) littermates. METHODS: We explored effects of 1 μm flecainide on WT and RyR2(S/S) atria. Arrhythmic incidence, action potential (AP) conduction velocity (CV), atrial effective refractory period (AERP) and AP wavelength (λ = CV × AERP) were measured using multi-electrode array recordings in Langendorff-perfused hearts; Na(+) currents (INa ) were recorded using loose patch clamping of superfused atria. RESULTS: RyR2(S/S) showed more frequent atrial arrhythmias, slower CV, reduced INa and unchanged AERP compared to WT. Flecainide was anti-arrhythmic in RyR2(S/S) but pro-arrhythmic in WT. It increased INa in RyR2(S/S) atria, whereas it reduced INa as expected in WT. It increased AERP while sparing CV in RyR2(S/S) , but reduced CV while sparing AERP in WT. Thus, RyR2(S/S) hearts have low λ relative to WT; flecainide then increases λ in RyR2(S/S) but decreases λ in WT. CONCLUSIONS: Flecainide (1 μm) rescues the RyR2-P2328S atrial arrhythmogenic phenotype by restoring compromised INa and λ, changes recently attributed to increased sarcoplasmic reticular Ca(2+) release. This contrasts with the increased arrhythmic incidence and reduced INa and λ with flecainide in WT.This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC, UK) under a David Phillips Fellowship held by JAF (BB/FO23863/1) and by the Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grants Scheme.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/apha.1250

    Arrhythmic substrate, slowed propagation and increased dispersion in conduction direction in the right ventricular outflow tract of murine Scn5a+/- hearts.

    Get PDF
    AIM: To test a hypothesis attributing arrhythmia in Brugada Syndrome to right ventricular (RV) outflow tract (RVOT) conduction abnormalities arising from Nav 1.5 insufficiency and fibrotic change. METHODS: Arrhythmic properties of Langendorff-perfused Scn5a+/- and wild-type mouse hearts were correlated with ventricular effective refractory periods (VERPs), multi-electrode array (MEA) measurements of action potential (AP) conduction velocities and dispersions in conduction direction (CD), Nav 1.5 expression levels, and fibrotic change, as measured at the RVOT and RV. Two-way anova was used to test for both independent and interacting effects of anatomical region and genotype on these parameters. RESULTS: Scn5a+/- hearts showed greater arrhythmic frequencies during programmed electrical stimulation at the RVOT but not the RV. The Scn5a+/- genotype caused an independent increase of VERP regardless of whether the recording site was the RVOT or RV. Effective AP conduction velocities (CV†s), derived from fitting regression planes to arrays of observed local activation times were reduced in Scn5a+/- hearts and at the RVOT independently. AP conduction velocity magnitudes derived by averaging MEA results from local vector analyses, CV*, were reduced by the Scn5a+/- genotype alone. In contrast, dispersions in conduction direction, were greater in the RVOT than the RV, when the atrioventricular node was used as the pacing site. The observed reductions in Nav 1.5 expression were attributable to Scn5a+/-, whereas increased levels of fibrosis were associated with the RVOT. CONCLUSIONS: The Scn5a+/- RVOT recapitulates clinical findings of increased arrhythmogenicity through reduced CV† reflecting reduced CV* attributable to reduced Nav 1.5 expression and increased CD attributable to fibrosis

    Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists

    Get PDF
    PURPOSE: The ferret cisplatin emesis model has been used for ~30 years and enabled identification of clinically used anti-emetics. We provide an objective assessment of this model including efficacy of 5-HT(3) receptor antagonists to assess its translational validity. METHODS: A systematic review identified available evidence and was used to perform meta-analyses. RESULTS: Of 182 potentially relevant publications, 115 reported cisplatin-induced emesis in ferrets and 68 were included in the analysis. The majority (n = 53) used a 10 mg kg(−1) dose to induce acute emesis, which peaked after 2 h. More recent studies (n = 11) also used 5 mg kg(−1), which induced a biphasic response peaking at 12 h and 48 h. Overall, 5-HT(3) receptor antagonists reduced cisplatin (5 mg kg(−1)) emesis by 68% (45–91%) during the acute phase (day 1) and by 67% (48–86%) and 53% (38–68%, all P < 0.001), during the delayed phase (days 2, 3). In an analysis focused on the acute phase, the efficacy of ondansetron was dependent on the dosage and observation period but not on the dose of cisplatin. CONCLUSION: Our analysis enabled novel findings to be extracted from the literature including factors which may impact on the applicability of preclinical results to humans. It reveals that the efficacy of ondansetron is similar against low and high doses of cisplatin. Additionally, we showed that 5-HT(3) receptor antagonists have a similar efficacy during acute and delayed emesis, which provides a novel insight into the pharmacology of delayed emesis in the ferret

    Incorporating sprouted chickpea flour in pasta increases brachial artery flow-mediated dilation

    Get PDF
    Purpose Consumption of alternative flours, such as sprouted chickpea flour, has shown increased popularity in recent years. Foods rich in antioxidants have been shown to influence brachial artery flow-mediated dilation (FMD), a non-invasive test of a crucial layer of the artery called the endothelium. Partially replacing the semolina flour in pasta with sprouted chickpea flour (SCF) may acutely affect endothelial function post-digestion. We sought to determine if FMD was higher, lower, or the same post-digestion of pasta made with 60% semolina flour and 40% SCF (SCF40) vs. post-digestion of pasta made with 100% semolina flour (SEM100, i.e., control). Methods Trolox equivalent antioxidant capacity (TEAC) analysis was performed on the same flour samples. Healthy participants underwent a screening visit and two randomized controlled meal data collection visits (SCF40 and SEM100). At each data collection visit, participants consumed 255 g of pasta with butter. FMD was assessed 2–3 h after pasta consumption. Results TEAC results showed that SCF40 (2.031 ± 0.096 mmol trolox/100 g sample) had significantly greater antioxidant capacity than SEM100 (1.736 ± 0.046 mmol trolox/100 g sample; p = 0.02). Twenty-two healthy participants (5 men and 17 women; 26 ± 2 years, 66.6 ± 2.3 kg, BMI = 24 ± 1 kg/m2, SBP = 114 ± 3 mmHg, DBP = 75 ± 2 mmHg, HR = 74 ± 3 BPM) were studied. FMD in the SCF40 condition (10.3% ± 1.2%) was greater than the SEM100 condition (7.9% ± 0.8%, p = 0.02). Conclusion These data suggest that partial substitution with sprouted chickpea flour in place of semolina flour in pasta acutely improves post-digestion FMD, which may be beneficial for cardiovascular health (ClinicalTrials.gov Identifier: NCT03801486)

    Glycosidase activity in the excretory-secretory products of the liver fluke, Fasciola hepatica

    Full text link
    Fasciola hepatica secretes proteolytic enzymes and other molecules that are essential for host penetration and migration. This mixture may include enzymes required for the degradation of supramucosal gels, which defend epithelial surfaces against pathogen entry. These contain hydrated mucins that are heavily glycosylated. Excretory-secretory products (ES) from F. hepatica were examined for a range of glycosidase activities, using synthetic 4-methylumbelliferyl glycosides as substrates. The ES product contained at least 8 different glycosidase activities, the most abundant of which were β-N- acetylhexosaminidase, β-galactosidase and β-glucosidase. Alpha-fucosidase, β-glucuronidase, α-galactosidase, α-mannosidase and neuraminidase were also present. β-N- acetylhexosaminidase and β-galactosidase were present in multiple isoforms (at least 4), whereas β-glucosidase appeared to exist as one isoenzyme with a pI <3.8. All three enzymes had acidic pH optima (4.5-5.0). Ovine small intestinal mucin was degraded by ES at pH 4.5 or 7.0, with or without active cathepsin L, the major protease found in F. hepatica ES. The ability of F. hepatica ES to degrade mucin in the presence or absence of active cathepsin L suggests that cathepsin L is not essential for mucin degradation. The abundance of β-galactosidase and β-hexosaminidase in ES supports a role for these enzymes in mucin degradation

    Aquatic community response to volcanic eruptions on the Ecuadorian Andean flank: evidence from the palaeoecological record

    Get PDF
    Aquatic ecosystems in the tropical Andes are under increasing pressure from human modification of the landscape (deforestation and dams) and climatic change (increase of extreme events and 1.5 °C on average temperatures are projected for AD 2100). However, the resilience of these ecosystems to perturbations is poorly understood. Here we use a multi-proxy palaeoecological approach to assess the response of aquatic ecosystems to a major mechanism for natural disturbance, volcanic ash deposition. Specifically, we present data from two Neotropical lakes located on the eastern Andean flank of Ecuador. Laguna Pindo (1°27.132′S–78°04.847′W) is a tectonically formed closed basin surrounded by a dense mid-elevation forest, whereas Laguna Baños (0°19.328′S–78°09.175′W) is a glacially formed lake with an inflow and outflow in high Andean Páramo grasslands. In each lake we examined the dynamics of chironomids and other aquatic and semi-aquatic organisms to explore the effect of thick (> 5 cm) volcanic deposits on the aquatic communities in these two systems with different catchment features. In both lakes past volcanic ash deposition was evident from four large tephras dated to c.850 cal year BP (Pindo), and 4600, 3600 and 1500 cal year BP (Baños). Examination of the chironomid and aquatic assemblages before and after the ash depositions revealed no shift in composition at Pindo, but a major change at Baños occurred after the last event around 1500 cal year BP. Chironomids at Baños changed from an assemblage dominated by Pseudochironomus and Polypedilum nubifer-type to Cricotopus/Paratrichocladius type-II, and such a dominance lasted for approximately 380 years. We suggest that, despite potential changes in the water chemistry, the major effect on the chironomid community resulted from the thickness of the tephra being deposited, which acted to shallow the water body beyond a depth threshold. Changes in the aquatic flora and fauna at the base of the trophic chain can promote cascade effects that may deteriorate the ecosystem, especially when already influenced by human activities, such as deforestation and dams, which is frequent in the high Andes
    corecore