15 research outputs found

    Pulmonary-to-Systemic Arterial Shunt to Treat Children With Severe Pulmonary Hypertension

    Get PDF
    BACKGROUND: The placement of a pulmonary-to-systemic arterial shunt in children with severe pulmonary hypertension (PH) has been demonstrated, in relatively small studies, to be an effective palliation for their disease. OBJECTIVES: The aim of this study was to expand upon these earlier findings using an international registry for children with PH who have undergone a shunt procedure. METHODS: Retrospective data were obtained from 110 children with PH who underwent a shunt procedure collected from 13 institutions in Europe and the United States. RESULTS: Seventeen children died in-hospital postprocedure (15%). Of the 93 children successfully discharged home, 18 subsequently died or underwent lung transplantation (20%); the mean follow-up was 3.1 years (range: 25 days to 17 years). The overall 1- and 5-year freedom from death or transplant rates were 77% and 58%, respectively, and 92% and 68% for those discharged home, respectively. Children discharged home had significantly improved World Health Organization functional class (P < 0.001), 6-minute walk distances (P = 0.047) and lower brain natriuretic peptide levels (P < 0.001). Postprocedure, 59% of children were weaned completely from their prostacyclin infusion (P < 0.001). Preprocedural risk factors for dying in-hospital postprocedure included intensive care unit admission (hazard ratio [HR]: 3.2; P = 0.02), mechanical ventilation (HR: 8.3; P < 0.001) and extracorporeal membrane oxygenation (HR: 10.7; P < 0.001). CONCLUSIONS: A pulmonary-to-systemic arterial shunt can provide a child with severe PH significant clinical improvement that is both durable and potentially free from continuous prostacyclin infusion. Five-year survival is comparable to children undergoing lung transplantation for PH. Children with severely decompensated disease requiring aggressive intensive care are not good candidates for the shunt procedure

    Human soft tissue sarcomas harbor an intratumoral viral microbiome which is linked with natural killer cell infiltrate and prognosis

    No full text
    BackgroundGroundbreaking studies have linked the gut microbiome with immune homeostasis and antitumor immune responses. Mounting evidence has also demonstrated an intratumoral microbiome, including in soft tissue sarcomas (STS), although detailed characterization of the STS intratumoral microbiome is limited. We sought to characterize the intratumoral microbiome in patients with STS undergoing preoperative radiotherapy and surgery, hypothesizing the presence of a distinct intratumoral microbiome with potentially clinically significant microbial signatures.MethodsWe prospectively obtained tumor and stool samples from adult patients with non-metastatic STS using a strict sterile collection protocol to minimize contamination. Metagenomic classification was used to estimate abundance using genus and species taxonomic levels across all classified organisms, and data were analyzed with respect to clinicopathologic factors.ResultsFifteen patients were enrolled. Most tumors were located at an extremity (67%) and were histologic grade 3 (87%). 40% were well-differentiated/dedifferentiated liposarcoma histology. With a median follow-up of 24 months, 4 (27%) patients developed metastases, and 3 (20%) died. Despite overwhelming human DNA (&gt;99%) intratumorally, we detected a small but consistent proportion of bacterial DNA (0.02-0.03%) in all tumors, including Proteobacteria, Bacteroidetes, and Firmicutes, as well as viral species. In the tumor microenvironment, we observed a strong positive correlation between viral relative abundance and natural killer (NK) infiltration, and higher NK infiltration was associated with superior metastasis-free and overall survival by immunohistochemical, flow cytometry, and multiplex immunofluorescence analyses.ConclusionsWe prospectively demonstrate the presence of a distinct and measurable intratumoral microbiome in patients with STS at multiple time points. Our data suggest that the STS tumor microbiome has prognostic significance with viral relative abundance associated with NK infiltration and oncologic outcome. Additional studies are warranted to further assess the clinical impact of these findings

    Cardiac remodeling in subclinical hypertrophic cardiomyopathy: the VANISH randomized clinical trial

    No full text
    Importance: Valsartan has shown promise in attenuating cardiac remodeling in patients with early-stage sarcomeric hypertrophic cardiomyopathy (HCM). Genetic testing can identify individuals at risk of HCM in a subclinical stage who could benefit from therapies that prevent disease progression. Objective: To explore the potential for valsartan to modify disease development, and to characterize short-term phenotypic progression in subclinical HCM. Design, Setting, and Participants: The multicenter, double-blind, placebo-controlled Valsartan for Attenuating Disease Evolution in Early Sarcomeric Hypertrophic Cardiomyopathy (VANISH) randomized clinical trial was conducted from April 2014 to July 2019 at 17 sites in 4 countries (Brazil, Canada, Denmark, and the US), with 2 years of follow-up. The prespecified exploratory VANISH cohort studied here included sarcomere variant carriers with subclinical HCM and early phenotypic manifestations (reduced E′ velocity, electrocardiographic abnormalities, or an increased left ventricular [LV] wall thickness [LVWT] to cavity diameter ratio) but no LV hypertrophy (LVH). Data were analyzed between March and December 2022. Interventions: Treatment with placebo or valsartan (80 mg/d for children weighing &lt;35 kg, 160 mg/d for children weighing ≥35 kg, or 320 mg/d for adults aged ≥18 years). Main Outcomes and Measures: The primary outcome was a composite z score incorporating changes in 9 parameters of cardiac remodeling (LV cavity volume, LVWT, and LV mass; left atrial [LA] volume; E′ velocity and S′ velocity; and serum troponin and N-terminal prohormone of brain natriuretic peptide levels). Results: This study included 34 participants, with a mean (SD) age of 16 (5) years (all were White). A total of 18 participants (8 female [44%] and 10 male [56%]) were randomized to valsartan and 16 (9 female [56%] and 7 male [44%]) were randomized to placebo. No statistically significant effects of valsartan on cardiac remodeling were detected (mean change in composite z score compared with placebo: −0.01 [95% CI, −0.29 to 0.26]; P = .92). Overall, 2-year phenotypic progression was modest, with only a mild increase in LA volume detected (increased by 3.5 mL/m2 [95% CI, 1.4-6.0 mL/m2]; P = .002). Nine participants (26%) had increased LVWT, including 6 (18%) who developed clinically overt HCM. Baseline LA volume index (LAVI; 35 vs 28 mL/m2; P = .01) and average interventricular septum thickness (8.5 vs 7.0 mm; P = .009) were higher in participants who developed HCM. Conclusions and Relevance: In this exploratory cohort, valsartan was not proven to slow progression of subclinical HCM. Minimal changes in markers of cardiac remodeling were observed, although nearly one-fifth of patients developed clinically overt HCM. Transition to disease was associated with greater baseline interventricular septum thickness and LAVI. These findings highlight the importance of following sarcomere variant carriers longitudinally and the critical need to improve understanding of factors that drive disease penetrance and progression. Trial Registration: ClinicalTrials.gov Identifier: NCT0191253

    Valsartan in early-stage hypertrophic cardiomyopathy:a randomized phase 2 trial

    No full text
    Hypertrophic cardiomyopathy (HCM) is often caused by pathogenic variants in sarcomeric genes and characterized by left ventricular (LV) hypertrophy, myocardial fibrosis and increased risk of heart failure and arrhythmias. There are no existing therapies to modify disease progression. In this study, we conducted a multi-center, double-blind, placebo-controlled phase 2 clinical trial to assess the safety and efficacy of the angiotensin II receptor blocker valsartan in attenuating disease evolution in early HCM. In total, 178 participants with early-stage sarcomeric HCM were randomized (1:1) to receive valsartan (320 mg daily in adults; 80–160 mg daily in children) or placebo for 2 years (NCT01912534). Standardized changes from baseline to year 2 in LV wall thickness, mass and volumes; left atrial volume; tissue Doppler diastolic and systolic velocities; and serum levels of high-sensitivity troponin T and N-terminal pro-B-type natriuretic protein were integrated into a single composite z-score as the primary outcome. Valsartan (n = 88) improved cardiac structure and function compared to placebo (n = 90), as reflected by an increase in the composite z-score (between-group difference +0.231, 95% confidence interval (+0.098, +0.364); P = 0.001), which met the primary endpoint of the study. Treatment was well-tolerated. These results indicate a key opportunity to attenuate disease progression in early-stage sarcomeric HCM with an accessible and safe medication

    References

    No full text
    corecore