58 research outputs found

    The Effects of Lean Beef Supplementation on the Iron Status of College Athletes

    Get PDF
    The purpose of this study was to determine whether weekly supplementation with nine ounces of prepackaged lean beef sticks could maintain the iron status of college endurance athletes. Thirty-four college endurance athletes (20 female, 14 male) were stratified by sex, baseline serum ferritin concentration, and use of iron supplements, and randomized into an intervention (n = 18) or control (n = 16) group. The participants in the intervention group supplemented their usual diet with nine ounces of prepackaged lean beef sticks per week and a daily multivitamin/mineral supplement containing 18 mg iron. The participants in the control group consumed their normal diet and the daily multivitamin/mineral supplement only. Body composition, dietary intake, and blood markers of iron status (hemoglobin, hematocrit, serum iron, serum ferritin, and total iron binding capacity) were measured at baseline and postintervention. A two-way analysis of variance with group and time as treatment factors was used to determine the main effect of beef supplementation on variables measured. None of the participants in this study was categorized as iron deficient at baseline or postintervention. Heme iron intake was significantly greater (P , 0.003) in the intervention group (3.1 ± 0.3 mg per day) than in the control group (1.5 ± 0.3 mg per day) as a result of the intervention. The intervention participants had significant improvements in hematocrit concentrations; there were, however, no differences in blood iron parameters of serum iron, hemoglobin, serum ferritin, or total iron binding capacity as a result of the intervention. The results of this study suggest that daily intake of bioavailable iron may attenuate the effects of exercise on the iron status of endurance athletes

    Greater Polar Moment of Inertia at the Tibia in Athletes Who Develop Stress Fractures

    Get PDF
    Background: Several previous investigations have determined potential risk factors for stress fractures in athletes and military personnel. Purpose: To determine factors associated with the development of stress fractures in female athletes. Study Design: Case-control study; Level of evidence, 3. Methods: A total of 88 female athletes (cross-country, n ¼ 29; soccer, n ¼ 15; swimming, n ¼ 9; track and field, n ¼ 14; volleyball, n ¼ 12; and basketball, n ¼ 9) aged 18 to 24 years were recruited to participate in a longitudinal bone study and had their left distal tibia at the 4%, 20%, and 66% sites scanned by peripheral quantitative computed tomography (pQCT). Patients included 23 athletes who developed stress fractures during the following year (cases). Whole body, hip, and spine scans were obtained using dual-energy x-ray absorptiometry (DXA). Analysis of covariance was used to determine differences in bone parameters between cases and controls after adjusting for height, lower leg length, lean mass, fat mass, and sport. Results: No differences were observed between cases and controls in any of the DXA measurements. Cases had significantly greater unadjusted trabecular bone mineral content (BMC), greater polar moment of inertia (PMI) at the 20% site, and greater cortical BMC at the 66% site; however, after adjusting for covariates, the differences became nonsignificant. When analyses were repeated using all individuals who had ever had a stress fracture as cases (n ¼ 31) and after controlling for covariates, periosteal circumference was greater in the cases than the controls (71.1 ± 0.7 vs 69.4 ± 0.5 mm, respectively; P ¼ .04). Conclusion: A history of stress fractures is associated with larger bones. These findings are important because larger bones were previously reported to be protective against fractures and stress fractures, but study findings indicate that may not always be true. One explanation could be that individuals who sustain stress fractures have greater loading that results in greater periosteal circumference but also results in the development of stress fractures

    Effects of Lean Beef Supplementation on Iron Status, Body Composition and Performance of Collegiate Distance Runners

    Get PDF
    Iron deficiency is prevalent among endurance athletes, particularly females. Low iron may compromise oxygen delivery and physical performance. Vegetarianism, desire for convenience, and perceived health risks associated with red meat contribute to low bioavailable iron intakes. The purpose of this study was to examine if lean beef supplementation would maintain iron status, improve body composition and increase performance of distance runners after 8 weeks. Twenty-eight (14 female) Division-I cross-country runners were stratified by iron status, use of iron supplements, and gender, and randomized into a control (n = 14) and intervention group. All participants maintained their typical diet and consumed a daily multivitamin, while the intervention group consumed 9 ounces of lean beef weekly. Dietary intake (total iron, heme-iron, protein, zinc), body composition, VO2max, and iron status (hemoglobin, hematocrit, serum iron, serum ferritin, total iron binding capacity [TIBC]) were measured at baseline and post-intervention. The intervention group had greater intakes of total and heme-iron. There were no group differences in amino acids, protein, or calories. Both groups had a significant body fat increase and lean mass decease over time. There was a significant VO2max in- crease over time in both groups. There were no group differences due to the intervention in serum ferritin, hemoglobin, serum iron, and TIBC. There was a significant difference in hematocrit between groups as a result of the intervention. In conclusion, increasing bioavailable iron from red meat may have effects on body composition and maintenance of blood iron markers; however, its direct impact on performance among endurance athletes is unclear

    Neuromuscular Performance Changes Throughout the Menstrual Cycle in Physically Active Females

    Get PDF
    OBJECTIVES: To determine changes in neuromuscular performance throughout the menstrual cycle in females aged 18-25. METHODS: Fifty physically active college females (25 on oral contraceptives (OC)) were recruited to participate. Data collection visits coincided with early-follicular (Fp), ovulatory (Op), and the mid-luteal (Lp) phases. Isokinetic peak torque at the knee (IPT) was measured at 60°/sec, 180°/sec, and 300°/sec. Grip force was measured using a handheld dynamometer. Plasma estradiol and progesterone confirmed menstrual cycle and serum relaxin was screened as a potential covariate. RESULTS: Grip strength was lower during Fp (30.1±0.7kg) than during Op (31.5±0.7 kg, p=0.003) and Lp (32.6±0.7 kg, p CONCLUSIONS: Results indicate that muscular performance is diminished during Fp and the lack of group-by-phase interaction indicates that this effect is not hormone-related. These data indicate that females may be at a greater risk of injury due to decreased strength during Fp than other phases of their cycle

    The Effect of Six Days of Dietary Nitrate Supplementation on Performance in Trained CrossFit Athletes

    Get PDF
    Background: While it is well established that dietary nitrate reduces the metabolic cost of exercise, recent evidence suggests this effect is maintained 24 h following the final nitrate dose when plasma nitrite levels have returned to baseline. In addition, acute dietary nitrate was recently reported to enhance peak power production. Our purpose was to examine whether chronic dietary nitrate supplementation enhanced peak power 24 h following the final dose and if this impacted performance in a heavily power-dependent sport. Methods: In a double-blind, randomized, crossover design, maximal aerobic capacity, body composition, strength, maximal power (30 s Wingate), endurance (2 km rowing time trial), and CrossFit performance (Grace protocol) were assessed before and after six days of supplementation with nitrate (NO) (8 mmol·potassium nitrate·d−1) or a noncaloric placebo (PL). A 10-day washout period divided treatment conditions. Paired t-tests were utilized to assess changes over time and to compare changes between treatments. Results: Peak Wingate power increased significantly over time with NO (889.17 ± 179.69 W to 948.08 ± 186.80 W; p = 0.01) but not PL (898.08 ± 183.24 W to 905.00 ± 157.23 W; p = 0.75). However, CrossFit performance was unchanged, and there were no changes in any other performance parameters. Conclusion: Consuming dietary nitrate in the potassium nitrate salt form improved peak power during a Wingate test, but did not improve elements of strength or endurance in male CrossFit athletes

    The Effect of Six Days of Dietary Nitrate Supplementation on Performance in Trained CrossFit Athletes

    Get PDF
    Background: While it is well established that dietary nitrate reduces the metabolic cost of exercise, recent evidence suggests this effect is maintained 24 h following the final nitrate dose when plasma nitrite levels have returned to baseline. In addition, acute dietary nitrate was recently reported to enhance peak power production. Our purpose was to examine whether chronic dietary nitrate supplementation enhanced peak power 24 h following the final dose and if this impacted performance in a heavily power-dependent sport. Methods: In a double-blind, randomized, crossover design, maximal aerobic capacity, body composition, strength, maximal power (30 s Wingate), endurance (2 km rowing time trial), and CrossFit performance (Grace protocol) were assessed before and after six days of supplementation with nitrate (NO) (8 mmol·potassium nitrate·d−1) or a noncaloric placebo (PL). A 10-day washout period divided treatment conditions. Paired t-tests were utilized to assess changes over time and to compare changes between treatments. Results: Peak Wingate power increased significantly over time with NO (889.17 ± 179.69 W to 948.08 ± 186.80 W; p = 0.01) but not PL (898.08 ± 183.24 W to 905.00 ± 157.23 W; p = 0.75). However, CrossFit performance was unchanged, and there were no changes in any other performance parameters. Conclusion: Consuming dietary nitrate in the potassium nitrate salt form improved peak power during a Wingate test, but did not improve elements of strength or endurance in male CrossFit athletes

    Pre-sleep feeding, sleep quality, and markers of recovery in division I NCAA female soccer players

    Get PDF
    Pre-sleep nutrition habits in elite female athletes have yet to be evaluated. A retrospective analysis was performed with 14 NCAA Division I female soccer players who wore a WHOOP, Inc. band – a wearable device that quantifies recovery by measuring sleep, activity, and heart rate metrics through actigraphy and photoplethysmography, respectively – 24 h a day for an entire competitive season to measure sleep and recovery. Pre-sleep food consumption data were collected via surveys every 3 days. Average pre-sleep nutritional intake (mean ± sd: kcals 330 ± 284; cho 46.2 ± 40.5 g; pro 7.6 ± 7.3 g; fat 12 ± 10.5 g) was recorded. Macronutrients and kcals were grouped into high and low categories based upon the 50th percentile of the mean to compare the impact of a high versus low pre-sleep intake on sleep and recovery variables. Sleep duration (p = 0.10, 0.69, 0.16, 0.17) and sleep disturbances (p = 0.42, 0.65, 0.81, 0.81) were not affected by high versus low kcal, PRO, fat, CHO intake, respectively. Recovery (p = 0.81, 0.06, 0.81, 0.92), RHR (p = 0.84, 0.64, 0.26, 0.66), or HRV (p = 0.84, 0.70, 0.76, 0.93) were also not affected by high versus low kcal, PRO, fat, or CHO consumption, respectively. Consuming a small meal before bed may have no impact on sleep or recovery

    Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review

    Get PDF
    The leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) has been extensively used as an ergogenic aid; particularly among bodybuilders and strength/power athletes, who use it to promote exercise performance and skeletal muscle hypertrophy. While numerous studies have supported the efficacy of HMB in exercise and clinical conditions, there have been a number of conflicting results. Therefore, the first purpose of this paper will be to provide an in depth and objective analysis of HMB research. Special care is taken to present critical details of each study in an attempt to both examine the effectiveness of HMB as well as explain possible reasons for conflicting results seen in the literature. Within this analysis, moderator variables such as age, training experience, various states of muscle catabolism, and optimal dosages of HMB are discussed. The validity of dependent measurements, clustering of data, and a conflict of interest bias will also be analyzed. A second purpose of this paper is to provide a comprehensive discussion on possible mechanisms, which HMB may operate through. Currently, the most readily discussed mechanism has been attributed to HMB as a precursor to the rate limiting enzyme to cholesterol synthesis HMG-coenzyme A reductase. However, an increase in research has been directed towards possible proteolytic pathways HMB may operate through. Evidence from cachectic cancer studies suggests that HMB may inhibit the ubiquitin-proteasome proteolytic pathway responsible for the specific degradation of intracellular proteins. HMB may also directly stimulate protein synthesis, through an mTOR dependent mechanism. Finally, special care has been taken to provide future research implications
    corecore