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Greater Polar Moment of Inertia at the Tibia
in Athletes Who Develop Stress Fractures

Lee A. Weidauer,*†‡ PhD, Teresa Binkley,† PhD, Matt Vukovich,‡ PhD, and Bonny Specker,† PhD,

Investigation performed at South Dakota State University, Brookings, South Dakota, USA

Background: Several previous investigations have determined potential risk factors for stress fractures in athletes and military
personnel.

Purpose: To determine factors associated with the development of stress fractures in female athletes.

Study Design: Case-control study; Level of evidence, 3.

Methods: A total of 88 female athletes (cross-country, n ¼ 29; soccer, n ¼ 15; swimming, n ¼ 9; track and field, n ¼ 14; volleyball,
n ¼ 12; and basketball, n ¼ 9) aged 18 to 24 years were recruited to participate in a longitudinal bone study and had their left distal
tibia at the 4%, 20%, and 66% sites scanned by peripheral quantitative computed tomography (pQCT). Patients included 23
athletes who developed stress fractures during the following year (cases). Whole body, hip, and spine scans were obtained using
dual-energy x-ray absorptiometry (DXA). Analysis of covariance was used to determine differences in bone parameters between
cases and controls after adjusting for height, lower leg length, lean mass, fat mass, and sport.

Results: No differences were observed between cases and controls in any of the DXA measurements. Cases had significantly
greater unadjusted trabecular bone mineral content (BMC), greater polar moment of inertia (PMI) at the 20% site, and greater
cortical BMC at the 66% site; however, after adjusting for covariates, the differences became nonsignificant. When analyses were
repeated using all individuals who had ever had a stress fracture as cases (n ¼ 31) and after controlling for covariates, periosteal
circumference was greater in the cases than the controls (71.1 ± 0.7 vs 69.4 ± 0.5 mm, respectively; P ¼ .04).

Conclusion: A history of stress fractures is associated with larger bones. These findings are important because larger bones were
previously reported to be protective against fractures and stress fractures, but study findings indicate that may not always be true.
One explanation could be that individuals who sustain stress fractures have greater loading that results in greater periosteal
circumference but also results in the development of stress fractures.

Keywords: stress fractures; female; athletes; moment of inertia; pQCT

Stress fractures are common injuries in athletes competing
at all levels. While the causes of stress fractures are not
completely understood, theories exist as to possible causes.
Participation in athletics appears to be a risk factor for stress
fractures, as evidenced by a prospective study that followed
111 track and field athletes for 1 year and reported a stress
fracture incidence of 0.70 per 1000 hours of training.7 Stress
fractures are also a concern within the military, with 1 study
reporting approximately 5% of all personnel sustaining a

stress fracture during training1 and another reporting that
5% of males and almost 20% of females sustained a stress
fracture within 3 months of the start of training.10 Other risk
factors that have been reported include being a female mili-
tary recruit,8,14,19,28 menstrual irregularity in track and field
athletes,5,6 and lower levels of physical fitness prior to the
onset of military training.4,32,39 The potential benefit of pre-
vious participation in athletics is variable, with 1 study
reporting a protective effect of previous sport participation
during basic training32 while another reported no effect of
previous sport participation on stress fracture incidence in
military recruits.39 While some studies in female athletes
report that the tibial shaft is the most common site for
stress fractures,6,25 others reported that the location of
stress fractures are site-specific based on the activities
being performed.25,27 Whether low bone mineral density
(BMD) is a risk factor is not clear; some studies indicate
an increased risk of stress fracture associated with low
BMD in track and field athletes6 while others report no
association in track and field athletes, cross-country ath-
letes, and military recruits.5,9,11
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Increased BMD and larger bone cross-sectional area are
thought to be protective against fracture, and physical
activity is widely accepted as a method for increasing BMD
and bone size in healthy populations.2,21,26,29,30 Our previ-
ously published data and data from several other studies
have shown that bone characteristics vary among different
sports.22-24,34-37,41 Some of the sport-specific differences
could potentially increase or decrease an individual’s risk
of stress fracture. These findings, such as increased cross-
sectional area in high-impact sports, support the Frost15-18

‘‘mechanostat’’ and the Wolff42,43 law, which state that bone
formation occurs based on the magnitude of the load that is
placed upon it. These adaptations in bone are thought to cre-
ate an individualized protection against fracture based on
each person’s activity pattern.

Several studies have investigated possible bone mea-
sures as predictors of stress fractures.3,11,13,19,20,40 One
study of 179 Finnish male military recruits reported that
individuals who developed stress fractures were taller and
had lower hip areal BMD (aBMD) and bone mineral content
(BMC) than recruits who did not develop a stress frac-
ture.40 Additionally, bone geometric properties such as
decreased tibia width using dual-energy x-ray absorptiome-
try (DXA),3 cross-sectional area using DXA and computed
tomography (CT),3,11 and section modulus using DXA and
CT3,13 have been reported to be negatively associated with
stress fracture risk.

Using DXA and peripheral quantitative computed
tomography (pQCT) technology, along with participant
information on previously identified potential stress frac-
ture risks, could add valuable knowledge to the field. A
3-site pQCT protocol for imaging at the 4%, 20%, and
66% distal tibia site allows investigation of trabecular
bone at the 4% site, cortical bone at the 20% site, and
muscle cross-sectional area for muscle-bone relationships
at the 66% site. Analysis of pQCT images allow us to
investigate different regions within the cortical shell to
determine whether the distribution of cortical bone
throughout the shaft is related to stress fracture occur-
rence. The purpose of this study was to determine how
factors such as bone mass and geometry, distribution of
mass throughout the cortical shell, and body composition
influence the risk of stress fractures in collegiate female
athletes. Based on previous literature, we hypothesized
that participants who developed stress fractures (cases)
within 6 months of the bone measurements would have
smaller bones than those participants who did not frac-
ture (controls).

MATERIALS AND METHODS

Subjects included 88 National Collegiate Athletic Associ-
ation (NCAA) Division 1 female athletes from various
teams at South Dakota State University. All visits were
completed within 1 month of the beginning of each
sport’s competitive season. Control subjects were defined
as athletes with no history of stress fractures and who
did not develop a stress fracture during the study (n ¼
57). Cases in the primary analyses were athletes who

had developed any stress fracture during the study
period (n ¼ 23) or only tibial stress fractures (n ¼ 10).
A secondary analysis was performed comparing individu-
als who had suffered a stress fracture previously or
developed a stress fracture during the study as cases
(n ¼ 31).

Height was measured to the nearest 0.5 cm using a
portable stadiometer (Seca Model 225), and weight was
measured to the nearest 0.1 kg using a digital scale
(Seca Model 770). All participants completed a question-
naire to obtain information about menstrual status, fam-
ily history of osteoporosis, medication and supplement
use, sleeping habits, and activities of daily living. Parti-
cipants also kept a 72-hour diet record to determine vita-
min D, calcium, and macronutrient intakes. Diets were
analyzed using The Food Processor Software (v 10.2;
ESHA Research).

Peripheral Quantitative Computed Tomography

Tibia length was measured using a segmometer (Ross-
craft) as the total distance between the medial tibial pla-
teau and the medial malleolus of the tibia. A scout view
was used to mark the endplate of the bone, and slice
images were obtained at 4%, 20%, and 66% of the tibia
length from the distal end using the XCT 3000 (Ortho-
metrix Inc). Voxel size was set to 0.5 mm and a scan
speed of 20 mm/s to obtain the images. Slice images were
analyzed using the manufacturer’s software (version
6.0B). Contour mode 2, pPeel mode 2, and a threshold
of 400 mg/cm3 were settings for 4% trabecular bone anal-
ysis. Trabecular outcomes were trabecular area, BMC,
and volumetric bone mineral density (vBMD). Cort mode
1 with a threshold of 280 mg/cm3 to identify the bone
edge for strength strain index (SSI) and 710 mg/cm3 to
identify the bone edge for other cortical bone measures
were used for cortical bone analysis. At the 20% and
66% slices, cortical area, thickness, BMC, and vBMD
along with polar moment of inertia (PMI), polar strength
strain index (pSSI), and periosteal and endosteal circumfer-
ences were measured. Additionally, muscle cross-sectional
area was measured at the 66% slice. The manufacturer
recommends a 2-step process for calculating muscle area
at the 66% site. Step 1 utilized contour mode 3 with a
threshold of 40 mg/cm3 and peel mode 1 at 100%, with
smoothing filter F03F05 selected. This step removes sub-
cutaneous fat and determines the cross-sectional area of
muscle (including the bone area) as the total area. Step 2
of the analysis used contour mode 1 with a threshold of
280 mg/cm3, peel mode 1 at 100%, and smoothing filter
F03F05 to obtain the bone area of the tibia and fibula,
given as the total area outcome. The total area deter-
mined in step 2 is subtracted from that in step 1 to mea-
sure muscle cross-sectional area of the 66% site. BoneJ12

and ImageJ38 software, utilizing the same threshold
parameters, were also used to analyze the bone images.
Additional variables obtained using BoneJ and ImageJ
included radial (endocortical, midcortical, and pericortical)
and polar (anterior, posterior, medial, lateral) vBMD mea-
surements. Coefficients of variation for these measurements
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at our site using the Stratec software are 0.5% to 2.8% for tra-
becular (4% distal site) and 0.5% to 1.2% for cortical measure-
ments (20% distal site).

Dual-Energy X-Ray Absorptiometry

Whole-body, lumbar spine, and hip images were obtained
using DXA (v 3.2; Hologic Apex). Whole-body images were
analyzed for lean mass, fat mass, BMC, and percentage
body fat (Apex v 3.2; non–National Health and Nutrition
Examination Survey reference base). Bone area, BMC, and
aBMD of the spine, femoral neck, and total hip were mea-
sured. Our institution’s coefficients of variation for these
measurements range from 0.8% to 1.3% for whole body,
0.9% to 1.5% for the spine, and 1.7% to 2.8% for the hip.

Subjects

All procedures and questionnaires used in this study were
reviewed and approved by the human subjects review com-
mittee, and written informed consent was obtained from all
participants.

Statistical Analysis

All analyses were performed in STATA release 11 (STATA
Corp). Analyses were performed using the groups described
above (developed any stress fracture or a tibial stress frac-
ture during the study period or ever had a stress fracture vs
controls). In all analyses, the controls never had or devel-
oped a stress fracture. Anthropometric and muscle and
bone measurements were compared between cases and con-
trols using independent t tests. Potential covariates consid-
ered were anthropometric measurements (height, lower leg

length, weight, lean and fat mass), age, sport (cross-
country, n ¼ 29; soccer, n ¼ 15; swimming, n ¼ 9; track and
field, n ¼ 14; volleyball, n ¼ 12; basketball, n ¼ 9), and diet-
ary intakes of calcium, vitamin D, protein, carbohydrates,
fat, and total caloric intake. All variables found to differ
between cases and controls or associated with a bone out-
come were entered into a general linear regression model,
and a backward stepwise approach was used to determine
each variable’s contribution to stress fracture risk. Analysis
of covariance (ANCOVA) was used to determine differ-
ences in bone parameters between cases and controls after
adjusting for height, lower leg length, lean mass, fat mass,
and sport.

RESULTS

Population Characteristics

Table 1 gives the participant characteristics of the con-
trols, cases that developed any stress fracture or a tibial
stress fracture during the study period, and cases who
ever had or developed a stress fracture. Cases and controls
did not differ in age, height, lower leg length, mass, fat
mass, body mass index (BMI), total body BMC, sport, time
spent in weightbearing activity, or dietary intakes of cal-
cium, vitamin D, protein, fat, and total calories. The only
differences observed were a lower intake of carbohydrates
in cases with any stress fracture and lower protein and
vitamin D intake in tibial stress fractures compared with
controls. A total of 23 athletes sustained stress fractures
during the study period; there were 10 stress fractures of
the tibia (6 cross-county, 1 track and field, 1 soccer, 2 volley-
ball, 1 basketball), 14 of the metatarsal (3 cross-country,
1 soccer, 2 basketball, 1 volleyball, 1 swimming, 6 track and

TABLE 1
Participant Characteristicsa

Controls
(n ¼ 57)

Developed Any
SF (n ¼ 23)

Developed Tibia
SF (n ¼ 10)

Ever Had Any
SF (n ¼ 31)

Age, y 20.1 ± 1.3 20.5 ± 1.4 19.9 ± 1.1 20.4 ± 1.6
Height, cm 167 ± 15 172 ± 7 172 ± 8 170 ± 8
Lower leg length, mm 377 ± 29 383 ± 38 377 ± 54 378 ± 35
Total body lean mass, kg 52 ± 7 52 ± 7 53 ± 6 53 ± 7
Total body fat mass, kg 15 ± 5 15 ± 6 15 ± 4 15 ± 5
Total body BMC, kg 2.5 ± 0.4 2.6 ± 0.4 2.7 ± 0.4 2.6 ± 0.4
BMI, kg/m2 25 ± 16 23 ± 4 23 ± 1 23 ± 3
Sport (XC/SC/SW/T&F/VB/BB), n 18/11/7/7/9/5 6/2/2/6/3/4 4/0/0/2/3/1 11/4/2/7/3/4
Dietary intake

Kilocalories, kcal 2505 ± 623 2477 ± 1218 2661 ± 401 2522 ± 1135
Protein, g/d 87 ± 26 94 ± 56 72 ± 19b 89 ± 49
Fat, g/d 89 ± 36 98 ± 48 95 ± 27 90 ± 42
Carbohydrates, g/d 347 ± 96 304 ± 137b 354 ± 148 343 ± 185
Calcium, mg/d 976 ± 389 948 ± 322 1129 ± 238 1005 ± 353
Vitamin D, IU/d 125 ± 136 111 ± 73 76 ± 85b 145 ± 127

Weightbearing exercise, min/d 65 ± 26 70 ± 23 78 ± 6 71 ± 20

aData are expressed as mean ± SD. BB, basketball; BMC¼ bone mineral content; BMI¼ body mass index; SC¼ soccer, SF, stress fracture;
SW ¼ swimming, T&F ¼ track and field; VB ¼ volleyball; XC ¼ cross-country.

bStatistically significant difference compared with the control group (P < .05).
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field), 1 femur (swimming), and 1 fibula (basketball).
Six participants sustained more than 1 stress fracture
during the study (1 cross-county [3 tibia], 1 soccer
[1 metatarsal and 1 tibia], 3 track and field [1 vertebra,
2 tibias, and 3 metatarsals], and 1 volleyball [1 metatar-
sal and 1 tibia]).

Development of Any Stress Fracture

Univariate and multivariate results for bone mass and geo-
metry are given in Table 2. No differences were observed for
any of the DXA measurements between cases and controls.
Prior to adjusting for covariates, cases had greater PMI at

the 20% and 66% sites and greater cortical BMC at the
66% site. Additionally, no significant differences in polar
or radial vBMD were observed (Figure 1). These bone dif-
ferences became nonsignificant after controlling for height,
lower leg length, lean and fat mass, and sport.

Tibia Stress Fracture

An additional analysis was performed using all individuals
who developed a tibial stress fracture as cases (n ¼ 10) and
individuals who never had a stress fracture as controls. In
this analysis, unadjusted femoral neck BMC and total hip
BMD were greater in cases than controls (Table 2), and

TABLE 2
Bone Measurements in Cases and Controlsa

Measurement
Controls
(n ¼ 57)

Developed Any
SF (n ¼ 23)

Developed Tibia
SF (n ¼ 10)

Ever Had Any
SF (n ¼ 31)

Hip DXA
Neck area, cm2 5.0 ± 0.4 5.0 ± 0.4 5.2 ± 0.2 5.2 ± 0.3
Neck BMC, g 5.0 ± 0. 5.0 ± 0.9 5.6 ± 0.9b 5.3 ± 1.0
Neck aBMD, g/cm2 0.981 ± 0.143 1.030 ± 0.170 1.070 ± 0.159 1.018 ± 0.173
Total area, cm2 34.5 ± 4.0 34.5 ± 4.0 33.5 ± 3.1 34.5 ± 3.0
Total BMC, g 37.3 ± 7.7 37.3 ± 7.7 39.6 ± 7.8 38.8 ± 7.2
Total aBMD, g/cm2 1.134 ± 0.172 1.074 ± 0.138 1.177 ± 0.146b 1.122 ± 0.166

Spine DXA
Total area, cm2 62.9 ± 6.2 63.6 ± 5.0 63.9 ± 7.2 63.6 ± 6.0
Total BMC, g2 70.3 ± 14.7 74.0 ± 15 73.8 ± 13.6 71.9 ± 15.0
Total aBMD, g/cm2 1.110 ± 0.158 1.133 ± 0.162 1.150 ± 0.126 1.123 ± 0.168

4% pQCT
Trabecular area, mm2 816 ± 145 869 ± 159 903 ± 170 848 ± 156
Trabecular BMC, mg 226 ± 39 244 ± 44 256 ± 44 237 ± 40
Trabecular vBMD, mg/cm3 278 ± 25 279 ± 26 284 ± 12 281 ± 24

20% pQCT
Cortical area, mm2 217 ± 31 227 ± 27 227 ± 27 225 ± 27
Cortical BMC, mg 250 ± 35 261 ± 32 259 ± 31 259 ± 32
Cortical vBMD, mg/cm3 1150 ± 22 1148 ± 21 1143 ± 24 1150 ± 19
Cortical thickness, mm 3.8 ± 0.4 3.8 ± 0.6 3.8 ± 0.6 3.8 ± 0.5
PMI, mm4 20.5 ± 5.5 23.5 ± 6.3b 23.7 ± 7.7 23.0 ± 4.6b

pSSI, mm3 14.9 ± 3.1 16.4 ± 3.4 16.3 ± 3.9 16.2 ± 3.1
Periosteal circumference (mm) 69.1 ± 5.1 71.8 ± 5.9 72.1 ± 7.5 71.5 ± 5.2b

Endosteal circumference, mm 45.2 ± 5.5 47.7 ± 8.0 48.1 ± 10.2 47.6 ± 7.1
Endocortical vBMD, mg/cm3 1169 ± 31 1168 ± 34 1162 ± 38 1172 ± 30
Midcortical vBMD, mg/cm3 1250 ± 20 1249 ± 17 1142 ± 18 1250 ± 16
Pericortical vBMD, mg/cm3 1247 ± 21 1242 ± 22 1237 ± 18 1243 ± 21

66% pQCT
Cortical area, mm2 329 ± 47 352 ± 52 353 ± 55 345 ± 52
Cortical BMC, mg 369 ± 52 395 ± 56b 394 ± 57 387 ± 56
Cortical vBMD, mg/cm3 1119 ± 25 1124 ± 24 1117 ± 30 1125 ± 23
Cortical thickness, mm 4.7 ± 0.6 4.9 ± 0.7 5.0 ± 0.8 4.8 ± 0.7
PMI, mm4 45.1 ± 1.2 51.0 ± 1.4b 50.1 ± 16.3 49.4 ± 13.0
pSSI, mm3 24.4 ± 4.6 26.8 ± 5.6 26.6 ± 6.7 26.2 ± 5.2
Periosteal circumference, mm 84.7 ± 6.1 86.9 ± 6.5 86.6 ± 7.6 86.5 ± 6.0
Endosteal circumference, mm 54.9 ± 6.8 55.8 ± 7.6 55.0 ± 9.6 56.0 ± 7.2
Muscle area, mm2 71.3 ± 1.1 63 ± 3 68.3 ± 1.5 73.8 ± 1.5

aValues are expressed as mean ± SD. Entries in boldface indicate statistically significant difference compared with controls after adjusting for
height, lower leg length, lean mass, fat mass, and sport.Polar momentof inertia (PMI) denoted as103; polar strengthstrain index (pSSI) denoted as
102; muscle area denoted as 102. aBMD, areal bone mineral density; BMC, bone mineral content; BMD, bone mineral density; DXA, dual-energy x-
ray absorptiometry; pQCT, peripheral quantitative computed tomography; SF, stress fracture; vBMD, volumetric bone mineral density.

bStatistically significant difference compared with the control group (P < .05).
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these differences remained significant after adjusting for
height, lower leg length, lean mass, fat mass, and sport.

History of Stress Fracture

Unadjusted periosteal circumference and PMI at the 20%
slice were greater in cases than controls (Table 2). After
controlling for the covariates described previously, perios-
teal circumference remained greater in cases than controls
(71.1 ± 0.7 and 69.4 ± 0.5 mm, respectively; P ¼ .04), while
PMI became nonsignificant.

DISCUSSION

While previous studies have reported that hip and spine
aBMD were lower in individuals who developed any stress
fractures throughout the body,6,33,40 our study indicated no
difference in these measurements between cases and con-
trols in our primary analysis. We suggest that previous
studies did not include athletes from a wide variety of
sports, leading to less variability in the bone measurements
and increased power to detect a difference between their
cases and controls.

Contrary to our hypothesis, participants who developed
stress fractures had greater unadjusted PMI at the 20% site
than controls. Our findings are somewhat contrary to previ-
ous studies that have reported narrower tibias,3,20 smaller
cross-sectional areas,3,11 and lower section modulus in
stress fracture cases.3,13 Since bone size and cortical area
plays a large role in the calculation of PMI (

P
ðd2 � AÞ,

where A is the area of each voxel [0.25 mm2] and d is the
distance of each voxel from the center of gravity), we would
have expected individuals who developed stress fractures to
have lower PMI as a result of having smaller bones. Corti-
cal thickness and periosteal circumference are the 2 vari-
ables that have the greatest influence on PMI. However,

means for cortical thickness were similar among groups,
while mean periosteal circumference was larger in all
stress fracture groups than controls. Based on these data,
we postulate that individuals experiencing greater loads
may be undergoing greater amounts of remodeling, result-
ing in periosteal expansion that results in a greater PMI.
However, the greater PMI is not enough to compensate for
the loads demanded and stress fractures occur. An addi-
tional explanation could be that the individuals with the
largest bones are the most active and therefore are at
greater risk of stress fracture.

After adjusting for covariates, the differences in PMI
between cases and controls became nonsignificant. This
is due to cases being slightly, but not significantly, taller.
In addition to being taller, the lower leg measurements
of cases were also slightly longer than those of controls.
This difference could also explain why these individuals
developed stress fractures. We postulate that individuals
with longer tibias may experience greater tibia bending
during activity, leading to increased tension and com-
pression forces that may result in the development of a
stress fracture.

When individuals who had a stress fracture at any point
in their life were compared with controls, both periosteal
circumference and PMI at the 20% slice were greater in
cases than controls. The difference in periosteal circumfer-
ence remained significant after adjusting for covariates.
These findings support our explanation that individuals
who develop stress fractures may be more active than indi-
viduals who do not develop stress fractures, and therefore
are subjected to more bone loading. Additionally, if these
individuals are more active, they are likely spending more
time exercising while fatigued. When muscles are fatigued
during training or competition, the loads placed on the ske-
leton increase,31 and load-bearing bones may adapt by
increasing periosteal circumference. If the bone cannot
adapt sufficiently, a stress fracture may occur.15

Figure 1. Polar and radial distribution of cortical volumetric bone mineral density (vBMD) in cases who developed a stress fracture
during the study and controls at the 20% tibial slice. No differences in cortical distribution were observed; however, the cases did
have larger bones than controls. Drawings are to scale.
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Another intriguing finding from our study was that the
differences in periosteal circumference and PMI between
cases and controls were not observed when comparing
cases of tibial stress fractures to controls. However, the
femoral neck BMC and aBMD at the hip were both greater
in cases than controls. Previous studies have reported
lower aBMD in people with stress fractures than con-
trols,6,33,40 but this does not appear to be the case for tibial
stress fractures in our study. We feel that our findings for
tibial stress fractures may be more indicative of overall
bone health affecting the development of stress fractures
rather than a mechanistic relationship. While no defini-
tive explanation for this difference exists, it is worth
exploring in future studies with a larger number of tibia
stress fractures and may be related to differences in levels
of physical activity among individual athletes.

Our findings allow us to speculate that stress fractures
may not be solely influenced by bone size and density, but
rather by physiological and genetic factors as well as fati-
gue. As the results from Milgrom et al31 indicate, a stress
fracture is very unlikely to occur if an individual does not
experience muscle fatigue. If stress fractures were purely
an anatomical condition related to bone health, the body
would adapt after injury occurred, and recurrence would
not be a problem. However, this does not appear to be the
case, with more than 25% of the stress fracture cases in our
study and 20% of stress fracture cases in a previous study27

experiencing recurrent stress fractures.

CONCLUSION

Stress fractures continue to be a significant concern for
sports medicine professionals. Our findings are impor-
tant because to our knowledge, this is the first time indi-
viduals with stress fractures have been reported to have
larger bones and higher measures of bone strength. The
current study attempted to identify lifestyle factors and
bone parameters that were associated with stress frac-
tures; however, a larger prospective study utilizing
plasma markers of bone remodeling will be important
in determining at what point stress fractures occur and
what factors, such as muscle fatigue, may contribute to
the development of stress fractures.
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