27 research outputs found

    Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow

    Get PDF
    River monitoring is of particular interest as a society that faces increasingly complex water management issues. Emerging technologies have contributed to opening new avenues for improving our monitoring capabilities but have also generated new challenges for the harmonised use of devices and algorithms. In this context, optical-sensing techniques for stream surface flow velocities are strongly influenced by tracer characteristics such as seeding density and their spatial distribution. Therefore, a principal research goal is the identification of how these properties affect the accuracy of such methods. To this aim, numerical simulations were performed to consider different levels of tracer clustering, particle colour (in terms of greyscale intensity), seeding density, and background noise. Two widely used image-velocimetry algorithms were adopted: (i) particle-tracking velocimetry (PTV) and (ii) particle image velocimetry (PIV). A descriptor of the seeding characteristics (based on seeding density and tracer clustering) was introduced based on a newly developed metric called the Seeding Distribution Index (SDI). This index can be approximated and used in practice as SDI = nu(0.1)/(rho/rho(c nu 1)), where nu, rho, and rho(c nu 1 )are the spatial-clustering level, the seeding density, and the reference seeding density at nu = 1, respectively. A reduction in image-velocimetry errors was systematically observed for lower values of the SDI; therefore, the optimal frame window (i.e. a subset of the video image sequence) was defined as the one that minimises the SDI. In addition to numerical analyses, a field case study on the Basento river (located in southern Italy) was considered as a proof of concept of the proposed framework. Field results corroborated numerical findings, and error reductions of about 15.9 % and 16.1 % were calculated - using PTV and PIV, respectively - by employing the optimal frame window

    Critical assessment and validation of a time-integrating fluvial suspended sediment sampler

    Get PDF
    Delivery of fine sediment to fluvial systems is of considerable concern given the physical and ecological impacts of elevated levels in drainage networks. Although it is possible to measure the transfer of fine sediment at high frequency by using a range of surrogate and automated technologies, the demands for assessing sediment flux and sediment properties at multiple spatially distributed locations across catchments can often not be met using established sampling techniques. The time-integrated mass-flux sampler (TIMS) has the potential to bridge this gap and further our understanding of fine sediment delivery in fluvial systems. However, these devices have undergone limited testing in the field. The aim of this paper was to provide a critical validation of TIMS as a technique for assessing fluvial fine sediment transfer. Fine sediment flux and sediment properties were assessed over 2 years with individual sampling periods of approximately 30 days. Underestimation of sediment flux ranged between 66% and 99% demonstrating that TIMS is unsuitable for assessing absolute sediment loads. However, assessment of relative efficiency showed that six of seven samplers produced statistically strong relationships with the reference sediment load (P < 0.05). Aggregated data from all sites produced a highly significant relationship between reference and TIMS loads (R2 = 0.80; P < 0.001) demonstrating TIMS may be suitable for characterizing patterns of suspended sediment transfer. Testing also illustrated a consistency in sediment properties between multiple samplers in the same channel cross section. TIMS offers a useful means of assessing spatial and temporal patterns of fine sediment transfer across catchments where expensive monitoring frameworks cannot be commissioned

    Rapid Detection of the Change in Surface Flow Patterns Near Fish Passages at Hydropower Dams With the Use of UAS Based Videos Under Controlled Discharge Conditions

    Get PDF
    The importance of keeping river environments healthy drives the scientific community towards the improvement of sustainable and validated environmental monitoring approaches. Accurate data on the state of the ecosystems provided rapidly are key in order to correctly assess, which interventions and management decisions are suitable, and which must be avoided. This paper analyses a rapid non-intrusive approach to change detection in surface flow patterns near fish passages at hydropower dams with the goal to improve the understanding of factors influencing fish passage discoverability. This, in turn, is of great relevance to the sustainability of migrating riverine fish populations from both ecological and economical perspectives. The present study includes three unique experiments performed at a large-scale hydropower dam site with an integrated fish passage under controlled discharge conditions. The analysis is performed with the use of the freely available KLT-IV software. The use of an Unmanned Aerial System (UAS) as a camera carrier platform provides the key flexibility in terms of any study site selection. The use of KLT-IV speeds up and simplifies flow pattern analysis, especially when compared to labour-intensive modelling relying on point-based ground truth data. In this paper, we demonstrate that the selected approach can be effectively applied to identify changes in surface flow patterns both in terms of flow velocity magnitudes and in terms of flow directions. It shows that the identification of actual flow patterns near the fish passage entrance provides more information on the potential discoverability of the fish passage than traditionally measured bulk discharge values alone

    Towards harmonization of image velocimetry techniques for river surface velocity observations

    Get PDF
    Since the turn of the 21st Century, image based velocimetry techniques have become an increasingly popular approach for determining open-channel flow in a range of hydrological settings across Europe, and beyond. Simultaneously, a range of large-scale image velocimetry algorithms have been developed, equipped with differing image pre-processing, and analytical capabilities. Yet in operational hydrometry, these techniques are utilised by few competent authorities. Therefore, imagery collected for image velocimetry analysis, along with validation data is required both to enable inter-comparisons between these differing approaches and to test their overall efficacy. Through benchmarking exercises, it will be possible to assess which approaches are best suited for a range of fluvial settings, and to focus future software developments. Here we collate, and describe datasets acquired from six countries across Europe and Asia, consisting of videos that have been subjected to a range of pre-processing, and image velocimetry analysis (Perks et al., 2019, https://doi.org/10.4121/uuid:34764be1-31f9-4626-8b11-705b4f66b95a). Validation data is available for 12 of the 13 case studies presented enabling these data to be used for validation and accuracy assessment

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Glaisdale Beck diversion scheme - channel change and suspended sediment response

    No full text
    This paper describes the implementation of a novel mitigation approach and subsequent adaptive management, designed to reduce the transfer of fine sediment in Glaisdale Beck; a small upland catchment in the UK. Hydro-meteorological and suspended sediment datasets are collected over a two year period spanning pre- and post-diversion periods in order to assess the impact of the channel reconfiguration scheme on the fluvial suspended sediment dynamics. Analysis of the river response demonstrates that the fluvial sediment system has become more restrictive with reduced fine sediment transfer. This is characterised by reductions in flow-weighted mean suspended sediment concentrations from 77.93 mg/l prior to mitigation, to 74.36 mg/l following the diversion. A Mann-Whitney U test found statistically significant differences (p < 0.001) between the pre- and post-monitoring median SSCs. Whilst application of one-way analysis of covariance (ANCOVA) on the coefficients of sediment rating curves developed before and after the diversion found statistically significant differences (p < 0.001), with both Log a and b coefficients becoming smaller following the diversion. Non-parametric analysis indicates a reduction in residuals through time (p < 0.001), with the developed LOWESS model over-predicting sediment concentrations as the channel stabilises. However, the channel is continuing to adjust to the reconfigured morphology, with evidence of a headward propagating knickpoint which has migrated 120 m at an exponentially decreasing rate over the last 7 years since diversion. The study demonstrates that channel reconfiguration can be effective in mitigating fine sediment flux in upland streams but the full value of this may take many years to achieve whilst the fluvial system, slowly readjusts
    corecore