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Abstract. River monitoring is of particular interest as a so-
ciety that faces increasingly complex water management is-
sues. Emerging technologies have contributed to opening
new avenues for improving our monitoring capabilities but
have also generated new challenges for the harmonised use of
devices and algorithms. In this context, optical-sensing tech-
niques for stream surface flow velocities are strongly influ-
enced by tracer characteristics such as seeding density and
their spatial distribution. Therefore, a principal research goal
is the identification of how these properties affect the accu-
racy of such methods. To this aim, numerical simulations
were performed to consider different levels of tracer clus-
tering, particle colour (in terms of greyscale intensity), seed-
ing density, and background noise. Two widely used image-
velocimetry algorithms were adopted: (i) particle-tracking
velocimetry (PTV) and (ii) particle image velocimetry (PIV).
A descriptor of the seeding characteristics (based on seed-
ing density and tracer clustering) was introduced based on
a newly developed metric called the Seeding Distribution
Index (SDI). This index can be approximated and used in
practice as SDI= ν0.1/

(
ρ
ρcν1

)
, where ν, ρ, and ρcν1 are the

spatial-clustering level, the seeding density, and the refer-
ence seeding density at ν = 1, respectively. A reduction in
image-velocimetry errors was systematically observed for
lower values of the SDI; therefore, the optimal frame win-
dow (i.e. a subset of the video image sequence) was defined
as the one that minimises the SDI. In addition to numeri-
cal analyses, a field case study on the Basento river (located
in southern Italy) was considered as a proof of concept of
the proposed framework. Field results corroborated numeri-
cal findings, and error reductions of about 15.9 % and 16.1 %

were calculated – using PTV and PIV, respectively – by em-
ploying the optimal frame window.

1 Introduction

Streamflow observations are of enormous importance for en-
vironmental protection and engineering practice in general
(Anderson et al., 2006; Manfreda, 2018; Manfreda et al.,
2020; Owe, 1985). Such observations are critical for many
hydrological and hydraulic applications. In turn, these data
contribute to the understanding of more complex processes
such as flash flood dynamics (Perks et al., 2016), the interac-
tion of fish upstream and downstream of dams (Strelnikova
et al., 2020), sediment transport dynamics (Batalla and Veri-
cat, 2009), and bridge scour (Manfreda et al., 2018a; Pizarro
et al., 2017a).

Streamflow measurement campaigns are generally expen-
sive and time-consuming, requiring the presence of highly
qualified personnel and forward planning (Tauro et al., 2018).
Such approaches are typically based on pointwise measure-
ments performed with flowmeters or acoustic Doppler cur-
rent profilers (ADCPs) that require the direct placement of
the operators or devices into the water. On the one hand,
this is necessary to provide a full description of the flow
velocity profile, but on the other hand, these field methods
might alter the measurements given the potential interaction
of these elements with the flow. Additionally, these standard
approaches can be challenging and sometimes impossible to
perform under flood conditions, when operators and devices
are unable to work in situ due to unfavourable circumstances.

Published by Copernicus Publications on behalf of the European Geosciences Union.



5174 A. Pizarro et al.: Identifying the optimal spatial distribution of tracers for optical sensing

This issue has been partially dealt with by the use of non-
contact approaches as a modern alternative for river flow
monitoring. Progress in the development of non-contact ap-
proaches (such as image velocimetry, radars, and microwave
systems) has been promising in recent years, opening the
possibility for real-time, non-contact flow monitoring. In par-
ticular, advancements in image processing techniques have
led to improvements of image-based approaches for surface
flow velocity (SFV) estimation, and these developments have
expanded the range of potential applications. Several tech-
niques, such as particle-tracking velocimetry (PTV) and par-
ticle image velocimetry (PIV), have been proposed and ap-
plied in field campaigns to accurately estimate SFV from
video acquisitions (Bechle et al., 2012; Huang et al., 2018;
Tauro and Salvatori, 2017). In turn, videos can be recorded
from different devices (fixed station located close to the river
section of interest; cell phones; or onboard unmanned aerial
systems, UASs), allowing an easy and portable way to es-
timate SFVs and, consequently, river discharge (Kinzel and
Legleiter, 2019; Leitão et al., 2018; Manfreda et al., 2018b;
Pearce et al., 2020; Perks et al., 2016; Tauro et al., 2015).

The PTV technique revolves around particle identifica-
tion and tracking (Lloyd et al., 1995) that can be imple-
mented through cross-correlation (Brevis et al., 2011; Lloyd
et al., 1995) and relaxation (Wu and Pairman, 1995) among
other methods. Additionally, particle trajectories can be re-
constructed, adding valuable information to the analysis and
making it possible to apply trajectory-based filters to ensure
realistic trajectories (Eltner et al., 2020; Tauro et al., 2019).
On the other hand, PIV recognises and tracks patterns (which
can be a group of tracers within a discrete spatial portion of
the water surface) instead of single tracers, which are tracked
in PTV (Adrian, 1991, 2005; Peterson et al., 2008; Raffel et
al., 2018). As a consequence, PTV adopts an exclusively La-
grangian approach, while PIV employs an Eulerian one. This
technique is also named LSPIV when it is applied to large
scales and natural environments (Fujita et al., 1998).

The use of these techniques has been growing in recent
years, but it is hard to quantify their accuracy at field scales.
This difficulty can be attributed to (i) environmental con-
ditions, which can both deteriorate and enhance the image
quality during the acquisition period (Le Coz et al., 2010;
Muste et al., 2008), and (ii) the characteristics of the trac-
ers or features, such as colour, dimension, shape, seeding
density, and their spatial distribution in the field of view
(Dal Sasso et al., 2018, 2020; Raffel et al., 2018). PTV and
PIV need features to identify, match, and track to compute
surface flow velocities. High seeding densities are, however,
rare in natural environments, and, as a consequence, a com-
mon practice is the use of artificial tracers to increase the sur-
face seeding in the field of view (Dal Sasso et al., 2018; Tauro
et al., 2014, 2017). In this context, Fig. 1 shows three differ-
ent real case study examples of natural and artificial seedings
that tend to cluster. Remarkably, Fig. 1a reports high spatial-
clustering levels of tracers and complex structures during a

flood event at the Tiber river in Italy (Tauro et al., 2017),
whereas Fig. 1b and c present the case when artificial seed-
ing is introduced in the river system for image-velocimetry
analysis (Detert et al., 2017; Tauro et al., 2017). More infor-
mation about the mentioned case studies can be found else-
where (Perks et al., 2020).

The spatial distribution of artificial tracers (hereafter
called spatial clustering) is, however, operator-dependent and
influenced by their experience, the type of material deployed,
and the amount. External environmental and river conditions
such as wind and turbulence are also important factors. This
issue is extremely relevant for discharge estimates recovered
through image-based approaches because velocity errors are
transmitted to streamflow estimates. As a consequence, and
even when using up-to-date approaches, monitoring complex
flows and extreme flood events is still a challenge.

This paper aims to quantify the accuracy of SFV estimates
under different seeding densities and spatial-clustering lev-
els. To achieve this goal, the following objectives were pro-
posed: (i) perform numerical simulations of synthetic trac-
ers to produce 33 600 synthetic images with known seed-
ing characteristics; (ii) using these synthetic images, derive
a functional relationship between seeding densities, spatial-
clustering levels, and image-velocimetry errors under con-
trolled conditions; (iii) analyse footage acquired from the
Basento river to determine how variations in seeding char-
acteristics such as seeding density and spatial clustering of
tracers influence the image-velocimetry errors in a field en-
vironment. Finally, (iv) apply the function developed in (ii)
to the Basento river to enable the selection of the optimal
image frame sequence and minimise the velocity errors.

The rest of the paper is organised as follows: Sect. 2
presents the numerical framework for synthetic image gen-
eration; a description of the hydrological characteristics of
the Basento case study, which is used as a proof of concept;
and an outline of the PTV and PIV techniques adopted in the
analysis. Section 3 analyses the effects of seeding density and
spatial-clustering level on image-velocimetry results using
the synthetically generated images and those of the Basento
field case study. Section 4 presents the strengths and limita-
tions of the research and framework adopted in this paper.
Conclusions are provided in Sect. 5.

2 Methods

2.1 Numerical simulations

Numerical simulations were performed to test two different
image-velocimetry algorithms under controlled conditions,
minimising the effects of external disturbances. In particu-
lar, the influence of tracer or feature properties on the fi-
nal errors was quantified. Synthetic tracers were randomly
distributed in space with a unidirectional and constant ve-
locity. They consist of uniform circular shapes with diam-
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Figure 1. Examples of moving and clustering structures on the water surface: (a) natural seeding during a flood event at the Tiber river, Italy
(Tauro et al., 2017); (b, c) artificial seeding at low and intermediate flow conditions at Brenta river in Italy (Tauro et al., 2017) and Murg river
in Switzerland (Detert et al., 2017), respectively.

eter Dxp ≈ 10 px (pixels) and uniform white colour. Both
diameters and colours – in greyscale intensity – were altered
with white noise in order to consider more realistic configu-
rations. Their spatial distribution was controlled by a gener-
alised Poisson distribution (GPD) with an imposed numerical
seeding density λ and spatial-clustering level υ.

The GPD was first introduced by Efron (1986), allow-
ing the possibility to obtain point events randomly dis-
tributed in space with a given variance. The GPD has been
used to model randomly distributed events in different stud-
ies and describe the spatial characteristics of the landscape
and vegetation organisation across climatological gradients
(e.g. Good et al., 2013; Manfreda et al., 2017). In this paper,
the synthetic tracers are assumed to be randomly distributed
in space with a mean number λS, where S is the considered
area. As a consequence, the probability mass function that
the random number of synthetic tracers N will be equal to a
number ni is given by Eq. (1),

fGPD(λS) (ni)=
1

CGPD

exp
(
−
λS
υ

)
√
υ

(
exp(−ni)n

ni
i

ni !

)
(

exp(1)λS
ni

)ni/υ
, (1)

where λS and υ determine the location and the shape
of fGPD(λS)(ni), and CGPD is an integration constant.

Tracers moved with a constant numerically imposed ve-
locity of 15 px per frame along the y axis and within a grid
of 500px× 500 px on a clear water background as represen-
tative of real environmental conditions. Tracer diameter was
set to be larger than 2.5 px in order to avoid peak locking ef-
fects (Cardwell et al., 2011; Dal Sasso et al., 2018; Nobach
et al., 2005). Typical tracer dimensions at laboratory and
field scales motivated the choice of Dxp ≈ 10 px for image-
velocimetry experiments (Tauro et al., 2016).

Synthetic image sequences were generated by varying the
number of tracers in the spatial domain, allowing the con-
sideration of 14 different seeding densities ranging from
0.4× 10−5 ppp (particles per pixel) up to 1.0× 10−2 ppp.
This range of variability was established based on the typical

values adopted in field surveys (Tauro and Grimaldi, 2017)
and numerical studies (Dal Sasso et al., 2018). Tracer colour
(in terms of greyscale intensity) and diameter were altered
(by introducing Gaussian white noise with standard devia-
tions equal to 0.05 and 0.3, respectively) to simulate environ-
mental signal noise such as possible changes in luminosity,
brightness, and shadows. Figure 2 shows an example of syn-
thetic images generated with different spatial-clustering lev-
els and a fixed value of seeding density. In particular, the spa-
tial distribution of tracers moves from an overdispersed or-
ganisation (υ = 0.5), through a Poisson random distribution
(υ = 1) and an underdispersed one (υ = 100), to a super un-
derdispersed distribution (υ = 200). Figure 2a–d present the
original synthetic generation on the clear water background,
while Fig. 2e–h show the preprocessed images, enhancing
the contrast between tracers and background (see Sect. 2.3).
Furthermore, each numerical experiment involved generat-
ing 20 images, and each configuration was run 10 times. The
spatial-clustering level ranges from 0.5 to 200 (12 different
values), and as a consequence, 33 600 synthetic images were
generated (14 different λ, 12 different υ, 20 images per con-
figuration, and each configuration 10 times).

2.2 Proof of concept: the Basento case study

A field survey on the Basento river (Basilicata region, south-
ern Italy) was carried out to test the outcomes of numeri-
cal simulations under natural conditions. The cross section
considered for the measurements is located in the upper por-
tion of the basin (catchment area of about 127 km2; Fig. 3).
The main river flow characteristics at the time of video ac-
quisition were (i) river discharge (0.61 m3 s−1), (ii) maxi-
mum flow depth (0.38 m), (iii) river width (6.0 m), (iv) max-
imum surface flow velocity (0.68 m s−1), and (v) average
surface flow velocity (0.40 m s−1). Data were acquired us-
ing a DJI Phantom 3 Professional Quadcopter (DJI, Shen-
zhen, China) equipped with an integrated 4k UHD (ultra-
high-definition) video-recording camera and a three-axis sta-
bilised system. Video acquisition was performed using a
Sony EXMOR 1/2.3′′ complementary metal oxide semi-
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Figure 2. Synthetic generations of spatial distribution of tracers assuming different values of the parameter ν = 0.5 (overdispersed distri-
bution – a, e), 1.0 (Poisson random distribution – b, f), 100 (underdispersed distribution – c, g), and 200 (super underdispersed distribution
– d, h). Fixed value of the seeding density λ= 2.02× 10−3. The generation was carried out adopting a background in the images to provide
more realistic conditions (a–d). Thereafter, images have been preprocessed to increase the contrast and better visualise tracers (e–h).

Figure 3. (a) Basento river and its drainage basin with an indication of the measurement location (Basento at Potenza). (b) Greyscale footage
acquired with a DJI Phantom 3 Pro (river banks) and corresponding footage after the preprocessing (river flow) aimed at enhancing contrast
for particle identification.

conductor (CMOS) sensor, and a greyscale video was cap-
tured from the UAS platform with a resolution of 1920px×
1080 px (i.e. full high definition, FHD). The frame rate was
set to 24 frames per second (fps). Reference objects, use-
ful for image scale calibration and stabilisation, were po-
sitioned at visible locations on the riverbanks. The calibra-
tion factor converting pixels to metres was estimated, tak-
ing into consideration those objects with known a priori di-
mensions. The ground sampling distance (GSD) was, there-
fore, computed as 0.005 m px−1. Benchmark velocity mea-
surements were performed using a current meter (SEBA F1,

SEBA Hydrometrie GmbH & Co, Kaufbeuren, Germany) in
the proximity of the water surface at 11 different locations
across the river cross section. The accuracy of measure-
ments was within 2 % of the measured values, correspond-
ing to 0.001 and 0.013 m s−1 for the minimum and maxi-
mum velocities in question. The spanning distance between
the respective measurements was 0.5 m. Each measurement
was made over a fixed acquisition period of 30 s. River dis-
charge was estimated according to ISO 748 (1997) using the
velocity–area method. The cross section was divided into
panels of equal width, and, for each panel, the velocity was
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measured at 20 %, 60 %, and 80 % of the panel depth. Artifi-
cial seeding was deployed onto the water surface, giving the
possibility to create complex floating structures. Two opera-
tors were involved in the process, and artificial tracers made
of wood chips were used to enhance particle seeding in the
region of interest (ROI).

The videos captured with the UAS were first stabilised
using an automatic feature selection method that identifies
features in frame pairs, matching them to compute possi-
ble values of translation and rotation. The Features from Ac-
celerated Segment Test (FAST) detection algorithm was ap-
plied to identify features in an ad hoc ROI. To improve the
feature-matching accuracy at each step, the method utilises
the random sample consensus (RANSAC) filter to remove
unacceptable correspondences. The application of the stabil-
isation algorithm allowed the effects of camera movements
to be reduced throughout the duration of the video. Pla-
nar errors considering differences in translation and rotation
were computed, taking the first frame as the reference tar-
get. On average, the reduction due to the stabilisation process
goes from 64 to 7 px for the Basento case study. Therefore,
movement in the original video is reduced by around 89 %.
The stabilisation algorithm does not require ground control
points (GCPs) to be applied. Rather, it performs the detection
of features automatically, making the stabilisation process a
good alternative for unexperienced users.

The Basento river presented low-flow conditions, leading
us to subsample the original video from 24 to 12 fps. The
choice of the appropriate frame rate was made to ensure,
on the one hand, a frame-by-frame displacement bigger than
the particle dimensions and, on the other hand, to minimise
the effects of camera movement between frame pairs on the
calculation of surface velocity. The footage was acquired in
greyscale, and a preprocessing procedure was applied using
contrast-stretching techniques to enhance the visibility of the
artificial tracers against the background. For this purpose,
GIMP (the GNU Image Manipulation Program) was utilised
to adjust brightness and contrast. This procedure eliminated a
large amount of noise caused by external reflections, improv-
ing the number of tracers identified and thus cross-correlation
in the ROI. Figure 3b shows a composite example of the orig-
inal frame in greyscale, overlain by a preprocessed image
covering the extent of the active channel (darker area over-
lapping the original frame).

2.3 Image-velocimetry analysis

PTV analyses were carried out by employing a command-
line version of PTVLab software (Brevis et al., 2011) that
was automated in order to handle the number of synthetic
images. Tracer detection was performed using the particle
Gaussian mask correlation method (Ohmi and Li, 2000). Pa-
rameters for particle diameter and reflectance intensity were
set equal to 8 px and 70, respectively. Particle tracking was
implemented using a cross-correlation algorithm (Wu and

Pairman, 1995). The interrogation area (IA) was set at 20 px,
cross-correlation threshold at 0.7, and neighbour similarity
percentage at 25 %. PTV parameter settings were slightly
modified under field conditions due to the differences be-
tween the numerical and field datasets. In particular, the av-
erage tracer dimension in the field conditions was estimated
as 5 px, and therefore, the particle diameter was set equal to
4 px and the IA to 25 px.

PIV analyses were performed by employing a command-
line version of PIVLab software (Thielicke and Stamhuis,
2014). The PIV algorithm was applied for both numerical
and field analysis using the fast Fourier transform (FFT) with
a three-pass standard correlation method (search and inter-
rogation areas of 128px× 64 px, 64px× 32 px, and 32px×
16 px and with 50 % overlap). Additionally, the 2 point×3
point Gaussian fit was employed to estimate the subpixel dis-
placement peak. These parameters were carefully chosen to
ensure correct identification and tracking of synthetic tracers.

Finally, the quality of the results was determined by exam-
ining the magnitude of the errors that were computed as

ε = 100×
(uC− uR)

uR
, (2)

where uC is the computed velocity, and uR is the numeri-
cally imposed (numerical case taken as reference) or mea-
sured (field case) velocity.

3 Results and discussion

3.1 Numerical analysis

The performance of PTV and PIV tracking algorithms was
assessed by the calculation of errors (considering the im-
posed numerical surface velocity) to test how the seeding
density and spatial distribution of tracers influenced the final
velocity estimates. No postprocessing method was applied to
filter the spatio-temporal velocity results. The ROI was taken
as the original dimension of the synthetic image generation,
i.e. 500px×500 px. The processing times, considering all the
synthetically generated images, for PTV and PIV analyses
were 18 548 and 4736 s, respectively. The same hardware (i7-
8700 CPU at 3.20 GHz and 32 GB RAM) was used for both
image-velocimetry analyses, leading to a fair comparison be-
tween them. PTV computing time was almost 4 times higher
than PIV under the circumstances considered in this study.
For all cases, PTV and PIV techniques systematically under-
estimated the imposed numerical velocity independently of
the seeding density and spatial-clustering level under con-
sideration. Consequently, only negative errors were observed
with numerical results, in agreement with previously pub-
lished work (Dal Sasso et al., 2018). This can be due to the
use of a static background that may introduce sporadic zero-
velocity vectors. Figure 4 shows the PTV and PIV error re-
sults with different values of seeding densities and spatial-
clustering levels. A comparison between PTV and PIV is
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Figure 4. Comparison of PTV and PIV results using synthetic images with different values of seeding density and spatial-clustering level.
Only negative errors were observed with numerical results. (a) PTV vs. PIV errors (εPTV and εPIV, respectively). Each data point is associated
with a colour that is scaled based on the numerically imposed seeding density adopted in the numerical generation of synthetic images.
(b) Envelope error curves and areas as a function of seeding density and level of spatial clustering ν. The blue and orange colours are
associated with PTV and PIV results, respectively. Dashed and solid lines are associated with ν = 0.5 and ν = 200, respectively. (c) Close-up
of the upper-right portion of (b).

shown in Fig. 4a, where each data point is associated with a
colour that is scaled based on the numerically imposed seed-
ing density adopted in the generation of synthetic images.
A strong dependence between image-velocimetry results and
seeding density was observed: errors can be reduced by in-
creasing the seeding density. In all cases, PTV outperformed
PIV under the synthetic conditions analysed in this study.
These findings also support those of Tauro et al. (2017), who
found that PTV outperformed PIV in two different field case
studies (Brenta and Tiber rivers). It is, however, noteworthy
that the results we present here refer to a single synthetic ex-
periment that, although realistic, is not representative of any
field condition. Therefore, further investigation with a larger
set of idealised and field circumstances should be carried out
to generalise the obtained results.

Figure 4b shows the envelope error curves (and areas be-
tween them) for a range of seeding densities and level of
spatial clustering ν. The blue and orange colours are asso-
ciated with PTV and PIV error results, while dashed and
solid lines are associated with ν = 0.5 and ν = 200, respec-
tively. For the sake of simplicity, Fig. 4b only shows the
extreme cases, when ν = 0.5 and ν = 200; nevertheless, all
the other cases (with ν values between these two extremes)
were confined within these envelope curves. Error results of
both techniques were influenced by ν, with a higher spatial-
clustering level tending to deteriorate the accuracy of image-
velocimetry results, producing higher errors and associated

variability across the range of seeding densities. When the
sensitivities of PIV and PTV to changes in ν are compared,
PIV is generally more sensitive than PTV, as demonstrated by
the greater distance between ν = 0.5 and ν = 200 lines for a
given seeding density and by the shaded orange area being
greater than the blue. The minimum seeding density lead-
ing to the lowest errors (around 2 %–3 %) depended on ν.
These errors were taken as reference values after which an
asymptotic behaviour was observed. As a consequence, this
minimum seeding density concept is termed reference seed-
ing density in the rest of the paper. For instance, consider-
ing the PIV case, the reference seeding density values were
1.52× 10−3 and 1.02× 10−2 ppp for ν = 0.5 and ν = 200,
respectively. The reference seeding density values for PTV
were 1.02× 10−3 and 2.02× 10−3 ppp for ν = 0.5 and ν =
200, respectively.

These numerical results are useful to visualise more-in-
depth trends under controlled flow conditions, avoiding ex-
ternal disturbances. Results demonstrated that the minimum
required seeding density to produce an error equal to or lower
than 3 % differs slightly between the two techniques. We
used this percentage as a reference error in order to derive
a reference seeding density associated with a known error.
It was observed that PIV required 1.52× 10−3 ppp, while
PTV needed about 1.02× 10−3 ppp to reach the same er-
ror. Notably, seeding densities lower than 1.0×10−3 ppp pro-
duced larger errors (larger than 3 %), and consequently, flows
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should be seeded at least at this density in field campaigns for
optimal implementation of the methods. This practice should
be adopted if at all possible since typical natural flows are not
characterised by abundant transiting features, with maybe the
exception of high flows. Furthermore, the effective seeding
density (defined as the seeding that the algorithms are gen-
uinely able to identify, match, and track) is always lower than
the one transiting onto the water surface, and therefore, ex-
tra seeding is recommended practice. However, we are aware
that this recommendation might not be practical in all con-
ditions since fixed cameras can operate remotely without the
necessity to be in person at the field site, and deploying ma-
terial in wide channels or difficult-to-access areas might be
challenging.

Following dimensional considerations, a model of the
image-based errors can be formulated. Since the only vari-
ables considered in this study were the spatial-clustering
level and the seeding density, it is hypothesised that these er-
rors depend on only these variables. In functional form, this
gives

f (ε,ν,ρ,ρcν1)= 0, (3)

where f is a generic function, and ρ and ρcν1 are the seeding
density and the reference seeding density at ν = 1 (Poisson
case taken as a reference). According to the Buckingham π

theorem, Eq. (3) can be rewritten in terms of dimensionless
parameters as follows:

ε = f

(
ν,

ρ

ρcν1

)
. (4)

The function f is usually considered as a multiplication of
power laws (Buckingham, 1914; Evans, 1972; Melville and
Sutherland, 1988; Pizarro et al., 2017b). In this study, we par-
tially follow this approach and also hypothesise that the func-
tional relationship f is described by a two-parameter expo-
nential function:

ε = c1

(
1− e−c2SDI

)
(5)

SDI= νk1

(
ρ

ρcν1

)k2

, (6)

where the SDI (Seeding Distribution Index) is the multipli-
cation of power laws, and c1, c2, k1, and k2 are fitting co-
efficients. Model performance was quantified by means of
the root mean square error (RMSE) and the Nash–Sutcliffe
efficiency (NSE) for prediction of the image-velocimetry er-
rors. In turn, the fitting coefficients were calibrated using the
MATLAB genetic algorithm optimising RMSE. Table 1 sum-
marises the results of the calibration process for both PTV
and PIV, while Fig. 5 shows the image-velocimetry errors
as a function of the SDI and observed versus computed er-
rors. Figure 5 indicates that the SDI can correctly reproduce
the main dynamics of the image-velocimetry errors, report-
ing low RMSE values in calibration (5.34 % and 5.77 % for

Table 1. Calibrated values of c1, c2, k1, k2 and model performances
in terms of RMSE (%) and NSE. ρcν1 values for PIV and PTV
were taken from Fig. 4 and are 1.52× 10−3 and 1.02× 10−3 ppp,
respectively.

c1 c2 k1 k2 RMSE (%) NSE

PTV −71.87 0.04 0.10 −1.09 5.77 0.92
PIV −78.49 0.07 0.10 −1.06 5.34 0.97

PIV and PTV, respectively). A visual inspection of Fig. 5a
and b shows that increasing SDI values leads to higher errors
for both image-velocimetry techniques. Figure 5b and d also
show that the predictive capacity of Eq. (5) is higher at low
PTV and PIV error values.

Even though PIV and PTV work differently, the fitted val-
ues in Eq. (5) were similar. Remarkably, k1 and k2 showed
that the dimensionless SDI parameter can be approximated
and used in practice as

SDI= ν0.1/

(
ρ

ρcν1

)
. (7)

Furthermore, considering that the errors are minimised when
the SDI takes low values, the SDI can be used in field con-
ditions as a descriptor to choose the optimal portion of a
video to analyse in order to minimise the errors in image-
velocimetry estimates as a function of seeding density and
spatial-clustering level. This novel idea is explored in the
next subsection, taking the Basento river as a proof-of-
concept case study.

3.2 Field campaign: the Basento case study

Outcomes of the numerical analysis were tested on a real
case study in order to identify the best temporal window
(i.e. a subset of the video sequence) for image-velocimetry
analyses. The case study was selected due to the spatial dis-
tribution of tracers varying significantly during the record-
ing period, making it subjective to manually select the op-
timal frames for analysis. Figure 6 displays a preprocessed
frame with the location of the measuring points using stan-
dard field equipment (from L1 to L11). These surface flow
velocity measurements were taken as reference velocities for
PTV and PIV benchmarking. Figure 6b and c show a close-
up of the ROI and the identification of transiting features,
respectively. An example of identified features is presented
in Fig. 6d. In this figure, the number of features, their rela-
tive positions, and associated areas were identified using an
ad hoc algorithm developed by Dal Sasso et al. (2020). Mov-
ing features – that can be blobs, regions of uniform inten-
sity, or local corners – are detected and processed to derive
seeding properties (i.e. empirical seeding densities and spa-
tial distribution of tracers) on a frame-by-frame basis even if
shapes and dimensions of the tracers vary considerably. Us-
ing this approach, the empirical spatial-clustering level (i.e.
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Figure 5. Image-velocimetry errors as a function of the SDI (a, c) and observed versus computed errors (b, d). Blue and orange colours
are related to PTV and PIV numerical error results. Solid lines represent Eq. (5), while the dashed lines are the perfect agreement between
observed and computed image-velocimetry errors.

Figure 6. (a) Preprocessed frame indicating the ROI and the reference measuring locations for benchmark purposes. The isolation of the
ROI is presented in (b), while an example of identified features on the water surface is presented in (c). (d) Close-up of an arbitrary portion
of the ROI with the identified features.

the empirical equivalent to that used in the numerical simu-
lations), was quantified through the spatial dispersion index
(D∗ =D/DPoisson = [Var(N)/E(N)]/1, where Var(N ) and
E(N) are the variance and mean values of the number of
tracers N , respectively, computed in sub-patches of the same
size). This metric is normally measured to quantify whether
a set of events are clustered or dispersed. Important to no-
tice, D∗ is assumed as an estimator of ν due to their similar
properties such as D∗ = ν = 1, which means features follow

a Poisson distribution, whileD∗ < 1(ν < 1) andD∗ > 1(ν >
1) follow an over- and underdispersed spatial distribution, re-
spectively.

Figure 7 shows a comprehensive overview of the seeding
behaviour during the 200 frames considered for the analysis.
Figure 7a and b present the seeding density in particles per
pixel and the dispersion index D∗ computed as a function of
the frame number. The minimum and maximum values for
seeding density were 1.3× 10−4 and 2.9× 10−3 ppp, while
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Figure 7. Overview of seeding characteristics in the ROI of the Basento river during the acquisition time: (a) seeding density in particles per
pixel, (b) dimensionless dispersion index D∗.

those for the dispersion index were 4.1 and 57.3. Addition-
ally, the estimated mean area of features (computed frame
by frame and inside the ROI) varied between approximately
1.5 and 3.5 cm2.

The approach mentioned above made it possible to com-
pute the SDI and correctly identify the worst and best part of
the video for image-velocimetry analysis. A moving frame
window length of 100 frames was arbitrarily chosen, on
which an average dispersion index D∗ and seeding density
were computed. This decision was motivated to increase the
odds of populating the entire ROI with features. The empir-
ical SDI was then calculated as SDI=D∗

0.1
/
(

ρ
ρcν1

)
, where

D∗ and ρ are the average-in-100-frames dispersion index and
seeding density, respectively. Figure 8a depicts the SDI as
a function of the frame windows. Triangle markers corre-
spond to the minimum and maximum values of the SDI and
their respective locations (82–181 and 1–100, respectively).
Figure 8a shows the particular case of PTV; nevertheless,
PIV presented similar results. The locations of the minimum
and maximum SDI values were, therefore, unaffected by the
image-velocimetry technique under consideration.

Image-based velocity results were averaged in a block of
30× 30 cm2 for a fair comparison among PTV, PIV, and
benchmark velocity values. The measuring locations corre-
sponded with the centre of the blocks. Computed velocities
across the cross section and reference velocities are reported
in Fig. 8b. The blue and orange colours are associated with
PTV and PIV results, respectively (same colours used within
numerical results for consistency and fast visual compari-
son). Green squares are the velocities measured using the
current meter. Notably, the measuring location L1 had no
computed velocity values due to the lack of features tran-

siting on this part of the ROI, whereas only PIV was able
to compute velocities at L2. This issue can be explained due
to the inherent property of PIV to identify and track non-
seeded features such as ripples and other structures transiting
on the water surface. Interestingly, and in agreement with nu-
merical results, 80 % (frames 1–100) and 75 % (frames 82–
182) of the computed velocity measuring locations under-
estimated the reference velocities using PTV. Similarly, re-
sults using PIV were 67 % and 78 %, respectively. Therefore,
a close agreement was observed with the numerical results
that systematically presented underestimations of computed
velocities in comparison with the numerically imposed one.
The computed errors using PTV and PIV on the total num-
ber of frames available were 23.93 % and 23.69 %, respec-
tively. Moreover, adopting the optimal frame window en-
sured that image-velocimetry measurements were produced
for a greater or equal proportion of the channel than that pro-
duced by using frames 1–100 (PTV: 72.7 % vs. 45.5 % of the
channel width; PIV: 81.8 % vs. 81.8 %).

Both image-velocimetry approaches correctly captured the
mean behaviour of velocities across the cross section. Ta-
ble 2 presents summarised information of the average-in-
100-frames seeding density and dispersion index as well as
the initial and final frame used for image-velocimetry pur-
poses. The SDI value is also presented as well as the absolute
average error across the cross section. As expected from nu-
merical analyses, an error reduction with respect to the worst
scenario of about 15.9 % (PTV) and 16.1 % (PIV) was found
in the Basento case study by employing the optimal frame
window that minimises the SDI. It is therefore recommended
that the SDI is used as a descriptor of the optimal portion of
a video to analyse.
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Figure 8. (a) The SDI as a function of the frame window considering 100 frames. Triangle markers correspond to the minimum and maximum
value of the SDI. Their locations were 82–181 and 1–100, respectively. Particular case of PTV, whereas PIV showed similar results, and the
locations of the minimum and maximum SDI values were unaffected by the image-velocimetry technique. (b) Comparison between PTV
and PIV data for experiments on the Basento river. Values recorded with the current meter are also reported for a rapid visual assessment
(green squares). Blue and orange colours represent PIV and PTV data.

Table 2. Overview of feature characteristics, minimum and maximum SDI values, and absolute errors using PTV and PIV. Values in paren-
theses correspond to the error reduction with respect to the worst scenario using the optimal frame window.

Frames ρ D SDI Absolute average error (%) Absolute error (Eq. 5; %)

(from–to) (ppp) PTV PIV PTV PIV PTV PIV

1–100 1.2× 10−3 26.1 1.16 1.72 27.72 28.74 3.70 8.91
82–181 1.7× 10−3 18.2 0.81 1.21 23.31 (15.9) 24.11 (16.1) 2.61 (29.5) 6.36 (28.6)

Finally, considering numerical findings, field image-based
estimates presented larger errors in comparison with numer-
ical results for the respective same values of the SDI (last
two columns of Table 2). This is despite the average seeding
density being relatively high (∼ 1.5× 10−3 ppp) and the av-
erage dispersion index being relatively low (∼ 20). Possible
reasons for deteriorations in PTV and PIV estimates can be
attributed to other variables such as video stabilisation issues,
noise due to different environmental conditions (e.g. inter-
mittent and different levels of illumination, water reflections,
and presence of shadows), and different shapes and dimen-
sions of features (stressing the matching and tracking pro-
cess between consecutive frames). In this regard, Dal Sasso
et al. (2020) recently introduced metrics for the quantifi-
cation of seeding characteristics needed to enhance image-
velocimetry performances in rivers. Among them, the seed-
ing density, spatial-clustering level, and coefficient of varia-
tion of tracers’ dimensions were statistically significant pre-

dictors of velocity estimation accuracy. These issues should
be the subject of further investigation, along with the appli-
cation of these ideas to case studies with very different field
conditions, to assess the uncertainty of computed surface ve-
locities and remote river flow estimates.

4 Strengths and limitations

One of the main strengths of this study is the introduction of
the new dimensionless SDI, which combines seeding charac-
teristics – seeding density and spatial clustering of tracers –
for image-velocimetry purposes. A numerical framework of
synthetically generated images was adopted to isolate seed-
ing effects on the performance of PIV and PTV analysis. This
numerical framework allowed the generation of moving trac-
ers with the possibility to vary the seeding density and spatial
clustering of tracers. Additionally, one field case study was
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used to test and validate numerical findings. However, among
other limitations, the numerical framework considered a con-
stant and unidirectional imposed velocity only. Besides, PIV
and PTV were set to run using a single configuration (e.g.
PIV used FFT with a three-pass correlation method and fixed
search and interrogation areas rather than other combinations
of them or an ensemble correlation method). The field case
study was artificially seeded to enhance the identification and
tracking of moving patterns on the water surface. Interest-
ingly, the dispersion index D∗ was used as an empirical esti-
mator of the numerical clustering level of tracers ν. D∗ and
ν share some interesting properties, which are useful to char-
acterise under- and overdispersed spatial distribution of trac-
ers in practical applications. Finally, the errors computed
using all frames available (frames 1–200) versus the opti-
mal frame window (frames 82–181) were of the same order
of magnitude even though the number of frames used with
the SDI was half of the total available. As a consequence,
the quality of the seeding characteristics seemed to be more
critical than the duration of the footage. Of course, many
other factors might affect the quality of the videos and, con-
sequently, the performance of image-velocimetry estimates,
but this assessment focuses specifically on the spatial distri-
bution of tracers. In the field, other factors such as illumina-
tion conditions, shading on the scene, light reflections, pres-
ence of turbulent fluxes, and vibration of the camera, among
others, could further affect overall quality of the analysis, and
these should be the subject of further assessment.

5 Conclusions

In this paper, we investigated the performances of PTV and
PIV for surface flow velocity estimation. Synthetic gen-
eration of 33 600 images was performed to test image-
velocimetry techniques under different levels of seeding den-
sity and tracer spatial clustering. In all numerical cases, ve-
locity results systematically underestimated the imposed nu-
merical velocity. A general trend was observed in which in-
creasing the seeding density and decreasing the level of spa-
tial clustering improved results. The main advantage of the
numerical approach adopted is the controlled conditions in
which the analyses can be conducted, minimising the effects
of external disturbances. Based on numerical findings, seed-
ing densities lower than 1.0× 10−3 ppp produced larger er-
rors, and consequently, flows should be extra-seeded in field
campaigns for optimal implementation of image-velocimetry
methods. Additionally, the dimensionless SDI was intro-
duced as a descriptor of the optimal portion of the video
to analyse using the studied image-based techniques. Based
on numerical results, the SDI can be approximated and used
in practice as SDI= ν0.1/

(
ρ
ρcν1

)
, where ν, ρ, and ρcν1 are

the spatial-clustering level, the seeding density, and the con-
verging seeding density at ν = 1, respectively. A reduction

in image-based errors was observed with lower values of the
SDI.

The Basento field case study (located in southern Italy)
was considered as a proof of concept of the proposed frame-
work. Seeding characteristics were empirically estimated us-
ing a novel algorithm recently developed by the authors,
opening the possibilities of more refined analyses. The num-
ber of features, relative positions, and associated areas were
saved for the computation of the empirical seeding densi-
ties and spatial-clustering levels. The empirical SDI values
were then computed, and two extreme cases were considered
for velocimetry comparison purposes: (i) the one consider-
ing the maximum value of the SDI (worst case) and (ii) the
one related to the minimum SDI (best case). Field results
corroborated numerical findings, and an error reduction of
about 15.9 % and 16.1 % was achieved for PTV and PIV ap-
proaches, respectively, by using the optimal frame window
that minimises the SDI for the Basento case study.

Interestingly, field image-based estimates presented larger
errors than numerical results for the respective same values
of the SDI. Possible reasons for deteriorating PTV and PIV
estimates can be attributed to other variables such as (i) video
stabilisation issues; (ii) variable levels of illumination, wa-
ter reflections, and presence of shadows; and (iii) different
shapes and dimensions of seeding features, stressing the im-
portance of the feature-matching and feature-tracking pro-
cess between consecutive frames. Further assessment is re-
quired to evaluate the significance of these factors in con-
tributing to the uncertainty in image-velocimetry estimates
across a range of hydrological and environmental conditions.
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