6 research outputs found

    Fibroblast Growth Factor Signaling Mediates Pulmonary Endothelial Glycocalyx Reconstitution

    Get PDF
    The endothelial glycocalyx is a heparan sulfate (HS)-rich endovascular structure critical to endothelial function. Accordingly, endothelial glycocalyx degradation during sepsis contributes to tissue edema and organ injury. We determined the endogenous mechanisms governing pulmonary endothelial glycocalyx reconstitution, and if these reparative mechanisms are impaired during sepsis. We performed intravital microscopy of wild-type and transgenic mice to determine the rapidity of pulmonary endothelial glycocalyx reconstitution after nonseptic (heparinase-III mediated) or septic (cecal ligation and puncture mediated) endothelial glycocalyx degradation. We used mass spectrometry, surface plasmon resonance, and in vitro studies of human and mouse samples to determine the structure of HS fragments released during glycocalyx degradation and their impact on fibroblast growth factor receptor (FGFR) 1 signaling, a mediator of endothelial repair. Homeostatic pulmonary endothelial glycocalyx reconstitution occurred rapidly after nonseptic degradation and was associated with induction of the HS biosynthetic enzyme, exostosin (EXT)-1. In contrast, sepsis was characterized by loss of pulmonary EXT1 expression and delayed glycocalyx reconstitution. Rapid glycocalyx recovery after nonseptic degradation was dependent upon induction of FGFR1 expression and was augmented by FGF-promoting effects of circulating HS fragments released during glycocalyx degradation. Although sepsis-released HS fragments maintained this ability to activate FGFR1, sepsis was associated with the downstream absence of reparative pulmonary endothelial FGFR1 induction. Sepsis may cause vascular injury not only via glycocalyx degradation, but also by impairing FGFR1/EXT1-mediated glycocalyx reconstitution

    Anaerobic Biodegradation of Long-Chain n

    No full text

    Impact of Photooxidation and Biodegradation on the Fate of Oil Spilled During the Deepwater Horizon Incident: Advanced Stages of Weathering

    No full text
    While the biogeochemical forces influencing the weathering of spilled oil have been investigated for decades, the environmental fate and effects of “oxyhydrocarbons” in sand patties deposited on beaches are not well-known. We collected sand patties deposited in the swash zone on Gulf of Mexico beaches following the Deepwater Horizon oil spill. When sand patties were exposed to simulated sunlight, a larger concentration of dissolved organic carbon was leached into seawater than the corresponding dark controls. This result was consistent with the general ease of movement of seawater through the sand patties as shown with a <sup>35</sup>SO<sub>4</sub><sup>2–</sup> radiotracer. Ultrahigh-resolution mass spectrometry, as well as optical measurements revealed that the chemical composition of dissolved organic matter (DOM) leached from the sand patties under dark and irradiated conditions were substantially different, but neither had a significant inhibitory influence on the endogenous rate of aerobic or anaerobic microbial respiratory activity. Rather, the dissolved organic photooxidation products stimulated significantly more microbial O<sub>2</sub> consumption (113 ± 4 μM) than either the dark (78 ± 2 μM) controls or the endogenous (38 μM ± 4) forms of DOM. The changes in the DOM quality and quantity were consistent with biodegradation as an explanation for the differences. These results confirm that sand patties undergo a gradual dissolution of DOM in both the dark and in the light, but photooxidation accelerates the production of water-soluble polar organic compounds that are relatively more amenable to aerobic biodegradation. As such, these processes represent previously unrecognized advanced weathering stages that are important in the ultimate transformation of spilled crude oil
    corecore