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Abstract

The endothelial glycocalyx is a heparan sulfate (HS)–rich endovascular
structure critical to endothelial function. Accordingly, endothelial
glycocalyx degradation during sepsis contributes to tissue edema and
organ injury. We determined the endogenous mechanisms governing
pulmonary endothelial glycocalyx reconstitution, and if these
reparative mechanisms are impaired during sepsis. We performed
intravital microscopy of wild-type and transgenic mice to determine
the rapidity of pulmonary endothelial glycocalyx reconstitution after
nonseptic (heparinase-III mediated) or septic (cecal ligation and
puncturemediated) endothelial glycocalyx degradation.Weusedmass
spectrometry, surface plasmon resonance, and in vitro studies of
human andmouse samples to determine the structure ofHS fragments
released during glycocalyx degradation and their impact on fibroblast
growth factor receptor (FGFR) 1 signaling, a mediator of endothelial
repair. Homeostatic pulmonary endothelial glycocalyx reconstitution
occurred rapidly after nonseptic degradation and was associated
with induction of the HS biosynthetic enzyme, exostosin (EXT)-1.
In contrast, sepsis was characterized by loss of pulmonary EXT1
expression and delayed glycocalyx reconstitution. Rapid glycocalyx
recovery after nonseptic degradation was dependent upon induction
of FGFR1 expression and was augmented by FGF-promoting effects

of circulatingHS fragments released during glycocalyx degradation.
Although sepsis-released HS fragments maintained this ability to
activate FGFR1, sepsis was associated with the downstream absence
of reparative pulmonary endothelial FGFR1 induction. Sepsis may
cause vascular injury not only via glycocalyx degradation, but also
by impairing FGFR1/EXT1–mediated glycocalyx reconstitution.
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Clinical Relevance

The endothelial glycocalyx is a heparan sulfate–rich
endovascular layer critical to endothelial function.
Accordingly, sepsis-associated degradation of the pulmonary
endothelial glycocalyx contributes to septic lung injury;
however, little is understood about the mechanisms governing
glycocalyx reconstitution or their fate during sepsis. Using
animal and human studies, we demonstrate that fibroblast
growth factor receptor 1/exostosin 1 signaling is necessary for
glycocalyx reconstitution and that these homeostatic processes
are impaired during sepsis.
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The endothelial glycocalyx is a heparan sulfate
(HS)–rich layer of glycosaminoglycans and
associated proteoglycans that lines the micro-
and macrovascular intima. In vivo, glycocalyx
glycosaminoglycans become highly hydrated,
forming a substantial gel-like endothelial
surface layer (ESL) that projects 0.5 mm to
over 10 mm into the vascular lumen (1).
An intact ESL contributes to the endothelial
barrier to fluid and protein, regulates
leukocyte–endothelial adhesion, and
transduces fluid shear stress into
endothelial nitric oxide synthesis (2).
Accordingly, a number of acute and
chronic vascular diseases are characterized
by degradation of the glycocalyx/ESL
(collectively referred to subsequently here
as the “ESL”). For example, rapid induction
of endothelial heparanase (a TNF-a–
activated, HS-specific mammalian
endoglucuronosyl hydrolase) degrades ESL
HS during sepsis, leading to lung (3) and
kidney (4) injury.

Given the importance of ESL integrity
to vascular homeostasis, endothelial cells
would be expected to rapidly repair a
damaged ESL. However, little is known
about the endogenous mechanisms
driving ESL reconstitution. Mouse
cremasteric ESL recovery occurred within
5 days of intravenous heparinase-III (a
bacterial HS-specific endoglucuronosyl
lyase) or intrascrotal TNF-a (5). It is
unclear if a similarly slow pace of ESL
recovery occurs within the lung, an organ
characterized by a thicker ESL (3) and
greater functional susceptibility to edema.
Indeed, in vitro studies of endothelial
cells under shear stress demonstrate that
glycocalyx recovery is capable of occurring
as rapidly as 12 hours after enzymatic HS
degradation (6).

As HS is a critical contributor to
ESL structure and function (3), ESL
reconstitution likely requires induction
of HS biosynthesis. HS is a linear
glycosaminoglycan composed of repeating
hexuronic acid-glucosamine disaccharides,
the polymerization of which is dependent
upon glucosyltransferases, such as exostosin
(EXT)-1 (2). After polymerization, HS
undergoes targeted epimerization and
sulfation, yielding highly sulfated regions
(at least five saccharides in length) of
sufficiently negative charge to interact with
positively charged residues of proteins,
including growth factor ligands and their
cognate receptors. Through these charge-
based interactions, HS can serve as a

scaffolding molecule, facilitating growth
factor ligand–receptor binding and
promoting downstream signaling (2).

We hypothesized that pulmonary ESL
reconstitution would occur rapidly after
(nonseptic) HS degradation with
heparinase-III, reflecting the critical
homeostatic functions of an intact
pulmonary ESL. We hypothesized that
ESL repair would be promoted by activation
of endothelial growth factor signaling by
highly sulfated HS fragments released into
the circulation during ESL degradation.
Finally, we hypothesized that these
homeostatic processes of ESL reconstitution
would be impaired during sepsis, suggesting
that septic vascular dysfunction may arise
not only from ESL degradation, but also
from delayed reconstitution.

Materials and Methods

Cell Culture
In vitro experiments were performed as
described in the online supplemental
MATERIALS AND METHODS.

Animals
Experiments were approved by the
University of Colorado Denver (Aurora,
CO) Institutional Animal Care and Use
Committee and conducted in accordance
with National Institutes of Health
(Bethesda, MD) guidelines. Wild-type
male C57BL/6 mice (8–10 wk old)
were purchased from Jackson (Bar Harbor,
ME). Endothelial-specific Fgfr1/2 knockout
mice (Tie2-Cre:Fgfr1/2 f/f) were generously
provided by Dr. David Ornitz (Washington
University in St. Louis, St. Louis, MO) (7).
Additional details are provided in the
online supplemental MATERIALS AND

METHODS.

Human Subjects
As previously described (3, 8), we
prospectively obtained plasma samples
from mechanically ventilated patients with
nonpulmonary sepsis or pneumonia within
72 hours of admission to the Denver Health
Medical Center Medical Intensive Care
Unit (ClinicalTrials.gov NCT009380002).
We obtained written, informed consent
from patients’ proxy decision makers before
plasma collection. The Colorado Multiple
Institutions Review Board (Aurora, CO)
approved all protocols.

Induction of Murine Sepsis
We induced sepsis in 8- to 12-week-old male
C57BL/6 mice by cecal ligation and
puncture (CLP), as previously described (3)
and detailed in the online supplemental
MATERIALS AND METHODS.

Measurement of Pulmonary ESL
Thickness
As previously described (3, 9), we measured
pulmonary ESL thickness by dextran
exclusion using closed-chest intravital
microscopy of the mouse subpleural
microvasculature. For determination of ESL
recovery after nonseptic degradation, we
administered a one-time dose of intravenous
heparinase-III (1 [Sigma] unit; Sigma-
Aldrich, St. Louis, MO) or heat-inactivated
heparinase-III (1 unit, boiled for 15 min)
and measured ESL thickness via dextran
exclusion 24 hours later. For determination
of ESL recovery after sepsis, we performed
CLP and then performed intravital
microscopy of the subpleural microcirculation
24, 48, or 72 hours later. Additional details
are provided in the online supplemental
MATERIALS AND METHODS.

Plasma HS Isolation and
Quantification
HS was isolated from the plasma of patients
with nonpulmonary sepsis (pooled from
four subjects) or pneumonia (five subjects)
as previously described (8), and
disaccharide analyses were performed via
liquid chromatography–tandem mass
spectrometry, as detailed in the online
supplemental MATERIALS AND METHODS.
Plasma HS fragment size was determined
via PAGE with Alcian blue/silver staining,
as described in the online supplemental
MATERIALS AND METHODS.

Surface Plasmon Resonance
The binding of HS oligosaccharides to FGF2
was determined using surface plasmon
resonance (SPR). FGF2–HS binding was
measured by the ability of exogenous HS
oligosaccharides (of various sizes; sulfation)
to interfere with FGF2 binding to heparin
immobilized on a SPR chip, as detailed in
the online supplemental MATERIALS AND

METHODS.

BaF3 Signaling Assay
We treated BaF3 cells expressing FGFR1c
(the nonepithelial FGFR1 isoform [10])
with FGF2 (5 nmol/l), FGF1 (5 nmol/l), or
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HS oligosaccharides/fragments (various
concentrations), and measured optical
density to determine the impact of HS
oligosaccharides on FGF2–FGFR1
signaling. Alternatively, we treated cells
with FGF2 (5 nmol/l) and HS fragments
isolated from pooled human plasma
(250 ng/ml). As these cells are dependent
on FGFR1c for survival, cell density directly
reflects FGFR1c activity, as previously
described (11).

Statistical Analyses
Animals were randomized to treatment or
control groups. Experimental replicates
were performed on the same day as a
matching control. Single comparisons
were made using Student’s two-tailed
t test. Multiple comparisons were made by
ANOVA with Tukey’s post hoc analysis.
Results were considered statistically
significant at a P value less than 0.05. All
graphs demonstrate mean values (6SE).
Analyses were performed using Prism
(GraphPad Software Inc., La Jolla, CA).

Results

Homeostatic Pulmonary ESL
Reconstitution Occurs Rapidly after
Heparinase-III–Mediated
Degradation, but Is Delayed after
Sepsis-Associated Degradation
The pulmonary ESL is a substantial
endovascular structure with HS-dependent
size and function (3). To determine the
mechanisms underlying ESL recovery after
nonseptic HS degradation, we treated mice
with intravenous heparinase-III, an HS-
specific endoglucuronosyl lyase that rapidly
degrades the pulmonary ESL (3, 12).
Using our previously established, intravital
microscopy–based dextran exclusion
technique (9), we observed that the
pulmonary ESL is completely reconstituted
within 24 hours of heparinase-III–mediated
degradation (Figure 1A). This rapid ESL
reconstitution coincided with induction of
pulmonary EXT1, an enzyme necessary for
HS polymerization (13). The increase in
lung homogenate EXT1 protein (Figure 1B)
occurred before a statistically significant
increase in lung homogenate EXT1 mRNA
(Figure 1C), potentially reflecting both
transcriptional and post-transcriptional
control of EXT1 expression. HS synthesis
was necessary to pulmonary ESL recovery,
as timely reconstitution did not occur in

mice treated with the artificial glycan
4-fluoro-N-acetyl-glucosamine (4-F-GlcNAc;
Figure 1D), which interrupts EXT1-mediated
HS polymerization (14, 15). Although
heparinase-III alone was insufficient to
induce lung edema 6 hours (wet:dry ratio =
4.426 0.25 in heparinase-III–treated wild-
type mice; 4.406 0.52 in heat-inactivated
heparinase-III–treated wild-type mice; n = 4;
P = 0.96) or 24 hours (Figure 1E) after
injection, heparinase-III treatment followed
6 hours later by 4-F-GlcNAc–mediated
inhibition of HS polymerization induced
pulmonary edema at 24 hours (Figure 1E),
demonstrating that processes of pulmonary
ESL recovery are homeostatic.

After determining the rapidity of
homeostatic pulmonary ESL reconstitution
after nonseptic degradation, we sought to
determine if similar recovery occurs during
sepsis. We have previously demonstrated
that sepsis (as modeled in mice using
CLP) induces expression of mammalian
heparanase, an enzyme that degrades
pulmonary ESL thickness with similar
rapidity (i.e., ,30 min) as heparinase-III
(3). Despite similar rapidity of degradation,
pulmonary ESL reconstitution after CLP
was significantly delayed (72 h, Figure 1F)
in comparison to heparinase-III (24 h,
Figure 1A). Administration of the
heparanase inhibitor, N-desulfated,
re-N-acetylated heparin, after septic ESL
degradation did not accelerate ESL
reconstitution (Figure 1F), suggesting that
delayed ESL reconstitution during sepsis
was not simply due to ongoing degradation,
but instead reflected aberrant ESL repair.
Indeed, CLP-treated mice demonstrated an
early loss of pulmonary EXT1 expression
(Figures 1G and 1H), contrasting EXT1
induction observed after heparinase-III
(Figures 1B and 1C). CLP-treated mice
eventually demonstrated return of baseline
pulmonary EXT1 expression (Figure 1H),
coincident with ESL recovery. CLP-treated
mice had no evidence of compensatory
induction of pulmonary EXT2 or EXT-like
2, salvage HS polymerases previously noted
(16) to produce (albeit truncated) HS in
EXT1-deficient cells (see Figure E1 of the
online supplement).

FGFR1 Mediates Pulmonary ESL
Reconstitution after Heparinase-III,
but Is Suppressed after CLP
To determine the mechanisms underlying
delayed pulmonary ESL reconstitution
during sepsis, we first sought to define the

mechanisms responsible for rapid
pulmonary ESL reconstitution after
heparinase-III. Recent reports have
implicated fibroblast growth factor (FGF)
receptors (FGFRs) in endothelial recovery
after vascular injury (7). FGFR1 is the
predominant FGFR expressed in
pulmonary endothelial cells (Figure E2,
as well as a review of publically available
RNA sequencing data [17]). Accordingly,
heparinase-III–mediated ESL degradation
was followed by increased pulmonary
FGFR1 expression (Figure 2A). Pulmonary
endothelial FGFR1 induction after
heparinase-III was ESL reparative, as
Tie2-Cre Fgfr1/2 f/f mice (which lack
endothelial FGFR1 [7]; Figure E3)
demonstrated absence of pulmonary EXT1
induction (Figure 2B) and delayed ESL
reconstitution (Figure 2C) after heparinase-
III. These transgenic investigations were
complemented by experiments using
AZD4547, a high-affinity FGFR1 inhibitor
(18) (Figures 2D and 2E). Similar to
4-F-GlcNAc (Figure 1E), AZD4547-induced
impairment of ESL reconstitution induced
lung edema, again suggesting that
FGFR1/EXT1–mediated ESL reconstitution
was homeostatic (see Figure E4). However,
this partial impairment in reconstitution
was not sufficient to cause lung edema in
Tie2-Cre Fgfr1/2 f/f mice, suggesting the
presence of compensatory lung-protective
pathways in these mice constitutively
lacking endothelial FGFR1 signaling.

In contrast to the reparative induction of
FGFR1 in wild-type mice after heparinase-
III–mediated ESL degradation, FGFR1
expression was suppressed after CLP-
mediated ESL degradation (Figure 3A).
To determine if this septic loss of FGFR1
expression occurred within the pulmonary
endothelium, we treated primary mouse
lung microvascular endothelial cells with
LPS and observed decreased endothelial
FGFR1 expression (Figure 3B).

Previous studies have demonstrated
that endothelial FGFR1 expression can be
decreased by micro-RNA (miR)-16 (19),
an endothelial-expressed miR previously
observed in the plasma of humans (20)
and animals (21) with sepsis. We similarly
noted a trend (P = 0.09) toward increased
plasma miR-16 12 hours after CLP
(Figure E5). However, pulmonary miR-16
expression was decreased 3 hours after CLP
(Figure 3C), suggesting that miR-16 was
unlikely to be active in the lung concurrent
with CLP-induced loss of pulmonary
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FGFR1 (Figure 3A). Furthermore,
treatment of mice with an miR-16 blocking
oligonucleotide had no impact on
pulmonary expression of EXT1 (Figure 3D)
12 hours after CLP, indicating that septic
loss of pulmonary EXT1 occurred in
an miR-16–independent fashion.

HS Fragments Released after
Heparinase-III–Mediated ESL
Degradation Activate FGFR1
Signaling
In human diseases characterized by ESL
degradation, HS fragments are released into
the circulation (22). We previously

observed (8) that these plasma HS
fragments include hexasaccharides to
octasaccharides (degree of polymerization
[dp] 6 to dp8) as well as larger-weight
fractions, with high degrees of glucosamine
amino-sulfation (N-sulfated, Figure 4A).
These structural characteristics suggest that
circulating HS fragments are capable of
influencing growth factor signaling, as they
meet typical size and sulfation requirements
necessary for interaction with positively
charged residues of growth factor ligands
and their cognate receptors (2, 10).

We therefore sought to determine if
heparinase-III–mediated ESL degradation

in mice similarly released highly sulfated HS
fragments capable of regulating endothelial-
reparative FGFR1 signaling. Treatment of
mice with heparinase-III was associated with
increased plasma N-sulfated HS fragments
(as measured by mass spectrometry,
Figure 4B and Figure E6) in a time course
consistent with loss of ESL thickness
(Figure 1A). As measurement of HS
fragment size in mouse plasma is technically
infeasible (given low plasma concentrations
and small sample volumes), we instead
isolated HS from whole mouse lungs,
then treated extracted HS ex vivo with
heparinase-III and performed gel
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electrophoresis. The vast majority of lung
HS fragments yielded after heparinase-III
treatment were dp6 or larger in size
(Figure 4C).

We next determined if highly sulfated
HS fragments larger than dp6 can influence
endothelial FGFR1 signaling. Using SPR, we
examined the ability of HS to interact with
FGF2, an FGFR1 ligand constitutively
expressed within the lung (23) and implicated
in endothelial repair (7, 19). FGF2 avidly
bound to full-length glycosaminoglycans
with high concentrations of N-sulfated
glucosamines (Figure 5A), suggesting that
N-sulfation was important for FGF2 binding.
The necessity of N-sulfation in FGF2 binding
was confirmed by selectively N-desulfating
heparin, which dramatically attenuated
FGF2 binding (Figure 5B). FGF2–HS
interactions were additionally size
dependent, with only fragments larger
than dp6 in size having substantial binding
(Figure 5C). Together, these findings indicate

that circulating HS fragments released
during heparinase-III–mediated ESL
degradation are of sufficient size and
sulfation to bind to FGF2.

To determine the impact of HS
fragment–FGF2 binding on FGFR1
signaling, we used BaF3 cells stably
transfected with FGFR1c, the primary
FGF2 receptor splice variant expressed in
pulmonary endothelial cells (Figure E2
[10, 17]). These cells require FGFR1
activation to grow/survive, as quantified
by optical density. FGF2-induced BaF3
cell survival/growth was significantly
augmented (Figure 5D) by the addition
of highly sulfated heparin or HS
octasaccharides (representative of .dp6
fragments released after heparinase-III).
FGFR1c activation occurred at similar
octasaccharide concentrations as those
observed in the plasma of heparinase-
III–treated mice (z50 ng/ml N-sulfated HS,
per Figure 4B, approximated in BaF3

experiments by similar concentrations of
highly sulfated heparin oligosaccharides).
Heparin or HS octasaccharides were
incapable of activating FGFR1c in the
absence of FGF2 (Figure E7). We
confirmed activation of endothelial FGFR
signaling by measuring FGFR induction
of extracellular signal–regulated kinase
signaling (19) in HPMVEC-1.6R cells
(a human pulmonary microvascular
endothelial cells line [24], Figures 6A
and 6C) treated with dp8 HS and FGF2.
FGFR dependence of extracellular
signal–regulated kinase activation was
confirmed by pretreatment with AZD4547
(Figures 6B and 6C).

HS/FGF2 treatment of HPMEC-
ST1.6R cells (Figure 6D) or primary mouse
lung microvascular endothelial cells
(Figure 6E) significantly induced EXT1
expression in an FGFR-dependent fashion
(Figure 6D). Taken together with the
absence of EXT1 induction in FGFR-
inhibited mice (Figures 2B and 2D), these
findings suggest that HS fragments, released
during heparinase-III–mediated ESL
degradation, activate endothelial
FGF2/FGFR1 signaling and promote
EXT1-mediated ESL reconstitution.

HS Fragments Released after
CLP-Mediated ESL Degradation
Activate FGFR1 Signaling
Given the observed loss of pulmonary EXT1
induction and delay in ESL reconstitution
after CLP, we sought to determine if sepsis
was associated not only with loss of
reparative endothelial FGFR1 expression
(Figure 3A), but also impaired FGFR1
activation by circulating HS fragments.
Similar to heparinase-III treatment,
CLP-treated mice demonstrated increased
circulating N-sulfated HS fragments
(Figure 7A) in concentrations sufficient
to induce FGFR1c signaling in BaF3 cells
(Figure 5D). Furthermore, there was an
abundance of pulmonary FGF2 during
sepsis (Figure 7B). We treated BaF3
cells with HS fragments (dp6–dp8
oligosaccharides or larger [8]) pooled from
plasma of human patients with sepsis to
confirm that sepsis-produced HS fragments
were capable of augmenting FGFR1
activation. These human-derived fragments
augmented FGFR1 signaling in a manner
consistent with full-length HS (Figure 7C).
In contrast, HS fragments collected from
the plasma of patients without sepsis with
pneumonia had minimal impact on
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FGFR1c signaling (Figure E8), likely
reflecting their undersulfated state (8).
Taken together, these findings indicate that
the delayed ESL reconstitution observed
after CLP is not due to an inability of
circulating HS fragments (released during
septic ESL degradation) to activate FGFR1,
but rather reflects the downstream absence
of endothelial FGFR1 expression during
sepsis (Figure 7D).

Discussion

This study identifies the endogenous
mechanisms driving reconstitution of a

degraded ESL. We found that nonseptic
(i.e., heparinase-III–mediated) ESL
degradation was followed by a rapid
induction of endothelial FGFR1 expression,
triggering homeostatic, EXT1-mediated
pulmonary ESL reconstitution. ESL repair
after heparinase-III was additionally
promoted by the release of N-sulfated HS
oligosaccharides capable of activating
FGF2–FGFR1 signaling. Rapid induction
of ESL repair by the very products of
ESL degradation is biologically efficient,
reflecting the critical importance of an
intact ESL to endothelial homeostasis. In
contrast to heparinase-III, CLP-mediated
ESL degradation was associated with loss of

reparative endothelial FGFR1 expression
and, accordingly, delayed ESL
reconstitution. However, HS fragments
released during septic ESL degradation
maintained FGFR1-promoting activity,
indicating that septic suppression of ESL
recovery occurs downstream of HS/FGF2
(Figure 7D). Taken together, these findings
suggest that sepsis may cause vascular
injury via not only ESL degradation, but
also suppressed FGFR1/EXT1–mediated
ESL recovery.

Our investigations (Figures 1–2, 4)
of the mechanisms governing pulmonary
ESL reconstitution are largely derived from
a nonseptic model of heparinase-III
(a bacterial HS–specific glucuronosyl
lyase) –mediated pulmonary ESL degradation.
We have previously demonstrated that sepsis
is characterized by similarly rapid pulmonary
ESL degradation by endothelial heparanase,
a mammalian HS–specific glucuronosyl
hydrolase (3). Heparinase-III (also known
as heparitinase) and heparanase have been
shown to act similarly upon matrix HS,
releasing biologically active HS fragments
(25). However, heparinase-III–mediated
ESL degradation was insufficient to
induce pulmonary vascular leak in vivo
(Figure 1E) (26), whereas heparanase-
mediated ESL degradation during sepsis
directly contributed to lung edema and
inflammation (3). These differences in
the physiologic consequence of ESL
degradation can be potentially explained
by a concomitant loss of reparative HS
biosynthetic enzymes (e.g., EXT1) during
sepsis (Figures 1G and 1H), leading to a
prolonged suppression of ESL integrity
(Figure 1F). Indeed, heparinase-III
treatment was able to induce lung edema
at 24 hours only if subsequent HS
biosynthesis was pharmacologically
inhibited (Figure 1E).

Our work (Figure 2) specifically
identifies endothelial FGFR1 as a critical
regulator of EXT1 induction and
homeostatic pulmonary ESL reconstitution.
Endothelial FGFR signaling is an important
mediator of vascular repair, with previous
studies of Tie2Cre-Fgfr1/2 knockout
mice demonstrating impaired retinal
microvascular responses to injury (7).
Although these mice are characterized by
endothelial loss of both FGFR1 and FGFR2,
the relative absence of FGFR2 expression in
the pulmonary microvascular endothelium
(as demonstrated in Figure E2, and via
analysis of publically available RNA

–O2C CH2 OX CH2 OX

OX

CO2
–

O

A B

C

OH OH OH
O

O

Glucosamine Uronic acid

NHY NHY

6

2
NOX

Heparinase-III

Pulmonary
endothelium Heparan sulfate

Heparinase-III
lung digests

Ladder dp2 dp10 dp20

Proteoglycan

O

O
OH

OHO

O

n = 0:

n

n = 1:
n = 18:

X = SO3
–, H

Y = SO3
–, COCH3 20P

la
sm

a 
N

-s
ul

fa
te

d 
H

S
di

sa
cc

ha
rid

es
 (

ng
/m

l)

10

0
0 1 4 6 24

Time after heparinase-III
injection (h)

80

70

60

*

50

40

30“dp2”
“dp4”
“dp20”

Figure 4. Structural characteristics of HS fragments released during heparinase-III–mediated ESL
degradation. (A) HS is a polymer of repeating disaccharide units (with size quantified as degree
of polymerization [dp]) that can be sulfated at 2-O, 6-O, and/or N-positions. n, number of repeats.
(B) Heparinase-III treatment (1 unit intravenously) is associated with increased plasma N-sulfated HS,
as measured by mass spectrometry. *P, 0.05 compared with time = 0; n. 3 per group. (C)
Heparinase-III treatment cuts lung HS in low-sulfation domains (X and Y are primarily hours and
OCCH3, per A) yielding a range of fragment sizes, predominantly six saccharides (dp6) or larger,
where X and Y (A) are primarily SO32. Heparinase-digested heparin ladder (left) shows disaccharides
of all dp values found in heparin, and purified heparin dp2, dp10, and dp20 fragments (right) serve
as size standards of gel electrophoresis. All graphs demonstrate mean values (6SE).

ORIGINAL RESEARCH

Yang, Haeger, Suflita, et al.: FGFR1 Mediates Pulmonary Glycocalyx Reconstitution 733



sequencing data [17]) provides reassurance
that our pulmonary EXT1 findings are
largely FGFR1-driven.

Although we observed that sepsis is
associated with loss of (ESL-reparative)
FGFR1 expression, the mechanisms
responsible for this suppression remain
uncertain. One potential mediator of septic
FGFR1 down-regulation is miR-16, an
endothelial miR that decreases FGFR1
expression and suppresses angiogenesis
(19). Previous reports have observed
increased plasma miR-16 in human and
murine sepsis (20, 21). Surprisingly, we
found little evidence of pulmonary miR-16
induction at time points coincident with
loss of pulmonary FGFR1 (Figure 3C).
Furthermore, inhibition of miR-16 failed to
prevent the septic loss of pulmonary EXT1
expression (Figure 3D). The apparent miR-
16 independence of septic suppression of
ESL recovery is compatible with the

observation that elevated plasma miR-16,
despite being a marker of sepsis, is
correlated with improved septic outcomes
in humans (27). The mechanisms
governing loss of endothelial FGFR1 during
sepsis will require further study.

In addition to identifying FGFR1
expression as a mediator of ESL repair, our
work highlights the importance of ESL-
derived HS fragments in promoting FGFR1
activation. Although others have reported
circulating HS as a biomarker of ESL
degradation, the biological function of these
oligosaccharides has been largely relegated
to serving as a damage-associated molecular
pattern, with less attention to impact on
other signaling pathways. When anchored
to cell-surface proteoglycans, HS may
function as a cis-activating coreceptor
for growth factor ligand–receptor
interaction (10). Our findings suggest
that endothelial growth factor signaling

can be paradoxically augmented by HS
degradation, provided that the products
of this degradation (HS oligosaccharides)
are of sufficient size (.dp6) and sulfation
(N-sulfated) to bind soluble FGF2 and
activate FGF2–FGFR1 signaling. This
sulfation requirement for growth factor
activation suggests that HS degradation
might release cryptic, highly sulfated HS
domains not participatory in cis activation
of growth factor signaling. Alternatively,
released HS oligosaccharides might
access basolateral growth factor receptors
otherwise unengaged by apical HS
proteoglycans. Determination of the
geographic localization of these interactions
will require future development of highly
sensitive glycosaminoglycan-labeling and
-sequencing techniques.

The critical necessity of ESL integrity
to the maintenance of vascular physiology
suggests that there likely exist additional
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systems of glycosaminoglycan biosynthesis
and ESL recovery complementary to
FGF2/FGFR1 signaling. Indeed, inhibition
of FGFR1 signaling did not completely
suppress EXT1 expression or ESL recovery
24 hours after heparinase-III (Figure 2),
and this partial suppression of ESL recovery
was only capable of inducing lung
edema after AZD4547-mediated FGFR1

inhibition (potentially suggesting compensatory
lung-protective mechanisms in Tie2Cre:
Fgfr1/2f/f mice; Figure E4). There is further
need to study alternative mechanisms
of EXT1 induction, and how these
mechanisms may be impacted
during sepsis. Our work specifically
highlights the complexity of EXT1
regulation: the observed rise in protein

expression before a statistically significant
rise in gene transcription suggests that
rapid changes in HS biosynthesis may
occur at the post-translational level,
potentially via prevention of EXT1
proteosomal degradation. Indeed, the
in vivo regulation of heparan synthesis
and sulfation remains uncertain, and is
the focus of active investigation (28).
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Consistent with the lungs’ functional
susceptibility to the consequences of ESL
loss (e.g., hypoxia arising from pulmonary
edema and inflammation), pulmonary ESL
recovery after heparinase-III occurred

much more rapidly (,24 h) than
cremasteric ESL recovery after heparinase-
III (5 d [5]). Notably, even the slowed pace
of pulmonary ESL recovery in CLP-treated
mice (3 d; Figure 1F) was more rapid than

that of the cremasteric ESL in healthy
animals. Pulmonary ESL recovery is so
highly prioritized that it is initiated before
the resolution of systemic illness, as CLP-
treated mice typically demonstrate
continued signs of illness (lethargy,
piloerection) at 48 hours, a time point at
which ESL reconstitution has already begun
(Figure 1F). The mechanisms responsible
for these organ-specific differences in the
pace of ESL recovery require further
investigation. Although these may be
partially explained by tissue-specific
differences in FGFR signaling (as
demonstrated by the differential expression
of FGFR2 in pulmonary [Figure E2] and
systemic endothelium [7]), other influences,
such as organ-specific differences in
vascular shear stress waveforms (with
tidal variability occurring in the
inflating/deflating lung) may contribute
to the rapidity of pulmonary HS
synthesis (29).

In summary, this work represents the
first investigation of the endogenous
mechanisms underlying homeostatic
pulmonary ESL reconstitution.
Furthermore, this report identifies that
FGFR1 serves as a critical mediator of ESL
repair and is suppressed during sepsis.
Our work raises numerous additional
mechanistic questions, the pursuit of which
promises to provide greater insight into ESL
physiology during health and disease. n
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