127 research outputs found

    Neuraminidase inhibitors for treatment and prophylaxis of influenza in children: systematic review and meta-analysis of randomised controlled trials

    Get PDF
    Objective To assess the effects of the neuraminidase inhibitors oseltamivir and zanamivir in treatment of children with seasonal influenza and prevention of transmission to children in households

    Doppler assessment of aortic stenosis: a 25-operator study demonstrating why reading the peak velocity is superior to velocity time integral

    Get PDF
    Aims Measurements with superior reproducibility are useful clinically and research purposes. Previous reproducibility studies of Doppler assessment of aortic stenosis (AS) have compared only a pair of observers and have not explored the mechanism by which disagreement between operators occurs. Using custom-designed software which stored operators’ traces, we investigated the reproducibility of peak and velocity time integral (VTI) measurements across a much larger group of operators and explored the mechanisms by which disagreement arose. Methods and results Twenty-five observers reviewed continuous wave (CW) aortic valve (AV) and pulsed wave (PW) left ventricular outflow tract (LVOT) Doppler traces from 20 sequential cases of AS in random order. Each operator unknowingly measured each peak velocity and VTI twice. VTI tracings were stored for comparison. Measuring the peak is much more reproducible than VTI for both PW (coefficient of variation 10.1 vs. 18.0%; P < 0.001) and CW traces (coefficient of variation 4.0 vs. 10.2%; P < 0.001). VTI is inferior because the steep early and late parts of the envelope are difficult to trace reproducibly. Dimensionless index improves reproducibility because operators tended to consistently over-read or under-read on LVOT and AV traces from the same patient (coefficient of variation 9.3 vs. 17.1%; P < 0.001). Conclusion It is far more reproducible to measure the peak of a Doppler trace than the VTI, a strategy that reduces measurement variance by approximately six-fold. Peak measurements are superior to VTI because tracing the steep slopes in the early and late part of the VTI envelope is difficult to achieve reproducibly

    Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis.

    Get PDF
    AIMS: This meta-analysis aims to quantify the association of reduced coronary flow with all-cause mortality and major adverse cardiovascular events (MACE) across a broad range of patient groups and pathologies. METHODS AND RESULTS: We systematically identified all studies between 1 January 2000 and 1 August 2020, where coronary flow was measured and clinical outcomes were reported. The endpoints were all-cause mortality and MACE. Estimates of effect were calculated from published hazard ratios (HRs) using a random-effects model. Seventy-nine studies with a total of 59 740 subjects were included. Abnormal coronary flow reserve (CFR) was associated with a higher incidence of all-cause mortality [HR: 3.78, 95% confidence interval (CI): 2.39-5.97] and a higher incidence of MACE (HR 3.42, 95% CI: 2.92-3.99). Each 0.1 unit reduction in CFR was associated with a proportional increase in mortality (per 0.1 CFR unit HR: 1.16, 95% CI: 1.04-1.29) and MACE (per 0.1 CFR unit HR: 1.08, 95% CI: 1.04-1.11). In patients with isolated coronary microvascular dysfunction, an abnormal CFR was associated with a higher incidence of mortality (HR: 5.44, 95% CI: 3.78-7.83) and MACE (HR: 3.56, 95% CI: 2.14-5.90). Abnormal CFR was also associated with a higher incidence of MACE in patients with acute coronary syndromes (HR: 3.76, 95% CI: 2.35-6.00), heart failure (HR: 6.38, 95% CI: 1.95-20.90), heart transplant (HR: 3.32, 95% CI: 2.34-4.71), and diabetes mellitus (HR: 7.47, 95% CI: 3.37-16.55). CONCLUSION: Reduced coronary flow is strongly associated with increased risk of all-cause mortality and MACE across a wide range of pathological processes. This finding supports recent recommendations that coronary flow should be measured more routinely in clinical practice, to target aggressive vascular risk modification for individuals at higher risk

    Laser Doppler flow for the hemodynamic differentiation of tachycardia

    Get PDF
    Background: Implantable cardioverter defibrillators (ICDs) offer effective therapy for the prevention of sudden cardiac death (SCD) due to ventricular arrhythmias. However, inappropriate shocks have detrimental effects on survival and quality of life. The addition of hemodynamic monitoring may be useful in discriminating clinically important ventricular arrhythmias. Objective: In this study, we assess the ability of laser Doppler flowmetry to assess the hemodynamic effect of paced atrial and ventricular arrhythmias using mean arterial blood pressure as the reference. Methods: In this acute human study in patients undergoing an elective electrophysiological study, laser Doppler flowmetry, arterial blood pressure, and surface ECG were acquired during high‐rate atrial and ventricular pacing to simulate supraventricular and ventricular tachycardias. Results: Arterial blood pressure and laser Doppler flow signals correlated well during atrial and ventricular pacing (rho = 0.694, p < .001). The hemodynamic impairment detected by both methods was greater during ventricular pacing than atrial pacing (–1.0% vs. 19.0%, p < .001). Laser Doppler flowmetry performed better than rate alone to identify hemodynamic impairments. Conclusion: In this acute study, laser Doppler flowmetry tissue perfusion served as a good surrogate measure for arterial pressure, which could be incorporated into future ICDs

    Automated analysis of mitral inflow doppler using convolutional neural networks

    Get PDF
    Doppler echocardiography is commonly used for functional assessment of heart valves such as mitral valve. Currently, the measurements are made manually which is a laborious and subjective process. We have demonstrated the feasibility of using neural networks to fully automate the process of mitral valve inflow measurements. Experiments show that the automated system yields comparable performance to the experts

    Influence of Loss Function on Left Ventricular Volume and Ejection Fraction Estimation in Deep Neural Networks

    Get PDF
    Quantification of the left ventricle shape is crucial in evaluating cardiac function from 2D echocardiographic images. This study investigates the applicability of established loss functions when optimising the U-Net model for 2D echocardiographic left ventricular segmentation. Our results indicate loss functions are a significant component for optimal left ventricle volume measurements when established segmentation metrics could be imperceptible

    Automated multi-beat tissue Doppler echocardiography analysis using deep neural networks

    Get PDF
    Tissue Doppler imaging is an essential echocardiographic technique for the non-invasive assessment of myocardial blood velocity. Image acquisition and interpretation are performed by trained operators who visually localise landmarks representing Doppler peak velocities. Current clinical guidelines recommend averaging measurements over several heartbeats. However, this manual process is both time-consuming and disruptive to workflow. An automated system for accurate beat isolation and landmark identification would be highly desirable. A dataset of tissue Doppler images was annotated by three cardiologist experts, providing a gold standard and allowing for observer variability comparisons. Deep neural networks were trained for fully automated predictions on multiple heartbeats and tested on tissue Doppler strips of arbitrary length. Automated measurements of peak Doppler velocities show good Bland–Altman agreement (average standard deviation of 0.40 cm/s) with consensus expert values; less than the inter-observer variability (0.65 cm/s). Performance is akin to individual experts (standard deviation of 0.40 to 0.75 cm/s). Our approach allows for > 26 times as many heartbeats to be analysed, compared to a manual approach. The proposed automated models can accurately and reliably make measurements on tissue Doppler images spanning several heartbeats, with performance indistinguishable from that of human experts, but with significantly shorter processing time

    High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy with Cardiovascular Deep Learning

    Full text link
    Left ventricular hypertrophy (LVH) results from chronic remodeling caused by a broad range of systemic and cardiovascular disease including hypertension, aortic stenosis, hypertrophic cardiomyopathy, and cardiac amyloidosis. Early detection and characterization of LVH can significantly impact patient care but is limited by under-recognition of hypertrophy, measurement error and variability, and difficulty differentiating etiologies of LVH. To overcome this challenge, we present EchoNet-LVH - a deep learning workflow that automatically quantifies ventricular hypertrophy with precision equal to human experts and predicts etiology of LVH. Trained on 28,201 echocardiogram videos, our model accurately measures intraventricular wall thickness (mean absolute error [MAE] 1.4mm, 95% CI 1.2-1.5mm), left ventricular diameter (MAE 2.4mm, 95% CI 2.2-2.6mm), and posterior wall thickness (MAE 1.2mm, 95% CI 1.1-1.3mm) and classifies cardiac amyloidosis (area under the curve of 0.83) and hypertrophic cardiomyopathy (AUC 0.98) from other etiologies of LVH. In external datasets from independent domestic and international healthcare systems, EchoNet-LVH accurately quantified ventricular parameters (R2 of 0.96 and 0.90 respectively) and detected cardiac amyloidosis (AUC 0.79) and hypertrophic cardiomyopathy (AUC 0.89) on the domestic external validation site. Leveraging measurements across multiple heart beats, our model can more accurately identify subtle changes in LV geometry and its causal etiologies. Compared to human experts, EchoNet-LVH is fully automated, allowing for reproducible, precise measurements, and lays the foundation for precision diagnosis of cardiac hypertrophy. As a resource to promote further innovation, we also make publicly available a large dataset of 23,212 annotated echocardiogram videos

    Multibeat echocardiographic phase detection using deep neural networks

    Get PDF
    Background Accurate identification of end-diastolic and end-systolic frames in echocardiographic cine loops is important, yet challenging, for human experts. Manual frame selection is subject to uncertainty, affecting crucial clinical measurements, such as myocardial strain. Therefore, the ability to automatically detect frames of interest is highly desirable. Methods We have developed deep neural networks, trained and tested on multi-centre patient data, for the accurate identification of end-diastolic and end-systolic frames in apical four-chamber 2D multibeat cine loop recordings of arbitrary length. Seven experienced cardiologist experts independently labelled the frames of interest, thereby providing infallible annotations, allowing for observer variability measurements. Results When compared with the ground-truth, our model shows an average frame difference of −0.09 ± 1.10 and 0.11 ± 1.29 frames for end-diastolic and end-systolic frames, respectively. When applied to patient datasets from a different clinical site, to which the model was blind during its development, average frame differences of −1.34 ± 3.27 and −0.31 ± 3.37 frames were obtained for both frames of interest. All detection errors fall within the range of inter-observer variability: [-0.87, −5.51]±[2.29, 4.26] and [-0.97, −3.46]±[3.67, 4.68] for ED and ES events, respectively. Conclusions The proposed automated model can identify multiple end-systolic and end-diastolic frames in echocardiographic videos of arbitrary length with performance indistinguishable from that of human experts, but with significantly shorter processing time
    corecore