57 research outputs found

    The mitochondrial epigenome: a role in Alzheimer's disease?

    Get PDF
    Considerable evidence suggests that mitochondrial dysfunction occurs early in Alzheimer's disease, both in affected brain regions and in leukocytes, potentially precipitating neurodegeneration through increased oxidative stress. Epigenetic processes are emerging as a dynamic mechanism through which environmental signals may contribute to cellular changes, leading to neuropathology and disease. Until recently, little attention was given to the mitochondrial epigenome itself, as preliminary studies indicated an absence of DNA modifications. However, recent research has demonstrated that epigenetic changes to the mitochondrial genome do occur, potentially playing an important role in several disorders characterized by mitochondrial dysfunction. This review explores the potential role of mitochondrial epigenetic dysfunction in Alzheimer's disease etiology and discusses some technical issues pertinent to the study of these processes.Alzheimer’s Research UKNI

    S21RS SGR No. 7 (Sexual Assault Statement)

    Get PDF
    A Resolution To Urge and Request LSU administrators to discourage all LSU faculty and staff from making statements not based on publicly available, verified information on pending investigations, specifically regarding the current scrutiny surrounding sexual violence impacting the LSU community

    Epigenetic Modification of mitochondrial genes in Alzheimer's disease (AD)

    Get PDF
    Alzheimer’s disease is a chronic, neurodegenerative disease characterised by amyloid plaque accumulation, neurofibrillary tangles and eventual neuronal cell loss. The complex aetiology exhibited in late-onset Alzheimer’s disease presents a considerable challenge in the field of genetics, with identified variants from genome-wide association studies collectively only explaining about a third of disease incidence. As such, new avenues are being explored to elucidate underlying mechanisms associated with disease onset and progression. In 2014, the first epigenome-wide association studies in Alzheimer’s disease were published, identifying several, novel differentially methylated loci in the nuclear genome in cortical brain samples, highlighting that epigenetic mechanisms may play a role in disease aetiology. Further, a growing body of evidence has implicated mitochondrial dysfunction as an early feature of disease pathogenesis. Despite this, few studies have investigated the role of mitochondrial DNA epigenetics in Alzheimer’s disease. Indeed, the relatively nascent field of mitochondrial epigenetics has largely been restricted to candidate-based gene approaches to identify differential methylation associated with disease. The main aim of this thesis was therefore to design an experimental and bioinformatic pipeline for the analysis of mitochondrial DNA methylation in post- mortem human brain tissue; first in healthy non-demented control donors, and subsequently in individuals with Alzheimer’s disease. Our work therefore represents the first epigenome wide studies of mitochondrial DNA methylation at single nucleotide resolution, providing a framework not only for mitochondrial DNA methylation in Alzheimer’s disease, but also in a number of complex diseases characterised by mitochondrial dysfunction

    A comparison of mitochondrial DNA isolation methods in frozen post-mortem human brain tissue--applications for studies of mitochondrial genetics in brain disorders

    Get PDF
    Given that many brain disorders are characterized by mitochondrial dysfunction, there is a growing interest in investigating genetic and epigenetic variation in mitochondrial DNA (mtDNA). One major caveat for such studies is the presence of nuclear-mitochondrial pseudogenes (NUMTs), which are regions of the mitochondrial genome that have been inserted into the nuclear genome over evolution and, if not accounted for, can confound genetic studies of mtDNA. Here we provide the first systematic comparison of methods for isolating mtDNA from frozen post-mortem human brain tissue. Our data show that a commercial method from Miltenyi Biotec, which magnetically isolates mitochondria using antibodies raised against the mitochondrial import receptor subunit TOM22, gives significant mtDNA enrichment and should be considered the method of choice for mtDNA studies in frozen brain tissue.Alzheimer's Research U

    Oncogenic Features in Histologically Normal Mucosa: Novel Insights Into Field Effect From a Mega-Analysis of Colorectal Transcriptomes

    Get PDF
    Introduction: Colorectal cancer is a common malignancy that can be cured when detected early, but recurrence among survivors is a persistent risk. A field effect of cancer in the colon has been reported and could have implications for surveillance, but studies to date have been limited. A joint analysis of pooled transcriptomic data from all available bulk RNA-sequencing data sets of healthy, histologically normal tumor-adjacent, and tumor tissues was performed to provide an unbiased assessment of field effect. Methods: A novel bulk RNA-sequencing data set from biopsies of nondiseased colon from screening colonoscopy along with published data sets from the Genomic Data Commons and Sequence Read Archive were considered for inclusion. Analyses were limited to samples with a quantified read depth of at least 10 million reads. Transcript abundance was estimated with Salmon, and downstream analysis was performed in R. Results: A total of 1,139 samples were analyzed in 3 cohorts. The primary cohort consisted of 834 independent samples from 8 independent data sets, including 462 healthy, 61 tumor-adjacent, and 311 tumor samples. Tumor-adjacent gene expression was found to represent an intermediate state between healthy and tumor expression. Among differentially expressed genes in tumor-adjacent samples, 1,143 were expressed in patterns similar to tumor samples, and these genes were enriched for cancer-associated pathways. Discussion: Novel insights into the field effect in colorectal cancer were generated in this mega-analysis of the colorectal transcriptome. Oncogenic features that might help explain metachronous lesions in cancer survivors and could be used for surveillance and risk stratification were identified

    Novel insights into the molecular mechanisms underlying risk of colorectal cancer from smoking and red/processed meat carcinogens by modeling exposure in normal colon organoids

    Full text link
    Tobacco smoke and red/processed meats are well-known risk factors for colorectal cancer (CRC). Most research has focused on studies of normal colon biopsies in epidemiologic studies or treatment of CRC cell lines in vitro. These studies are often constrained by challenges with accuracy of self-report data or, in the case of CRC cell lines, small sample sizes and lack of relationship to normal tissue at risk. In an attempt to address some of these limitations, we performed a 24-hour treatment of a representative carcinogens cocktail in 37 independent organoid lines derived from normal colon biopsies. Machine learning algorithms were applied to bulk RNA-sequencing and revealed cellular composition changes in colon organoids. We identified 738 differentially expressed genes in response to carcinogens exposure. Network analysis identified significantly different modules of co-expression, that included genes related to MSI-H tumor biology, and genes previously implicated in CRC through genome-wide association studies. Our study helps to better define the molecular effects of representative carcinogens from smoking and red/processed meat in normal colon epithelial cells and in the etiology of the MSI-H subtype of CRC, and suggests an overlap between molecular mechanisms involved in inherited and environmental CRC risk. Keywords: colon organoids; microsatellite instability; single-cell deconvolution; smoking; weighted gene co-expression network analysis

    Genetic Effects on Transcriptome Profiles in Colon Epithelium Provide Functional Insights for Genetic Risk Loci

    Get PDF
    Background & aims: The association of genetic variation with tissue-specific gene expression and alternative splicing guides functional characterization of complex trait-associated loci and may suggest novel genes implicated in disease. Here, our aims were as follows: (1) to generate reference profiles of colon mucosa gene expression and alternative splicing and compare them across colon subsites (ascending, transverse, and descending), (2) to identify expression and splicing quantitative trait loci (QTLs), (3) to find traits for which identified QTLs contribute to single-nucleotide polymorphism (SNP)-based heritability, (4) to propose candidate effector genes, and (5) to provide a web-based visualization resource. Methods: We collected colonic mucosal biopsy specimens from 485 healthy adults and performed bulk RNA sequencing. We performed genome-wide SNP genotyping from blood leukocytes. Statistical approaches and bioinformatics software were used for QTL identification and downstream analyses. Results: We provided a complete quantification of gene expression and alternative splicing across colon subsites and described their differences. We identified thousands of expression and splicing QTLs and defined their enrichment at genome-wide regulatory regions. We found that part of the SNP-based heritability of diseases affecting colon tissue, such as colorectal cancer and inflammatory bowel disease, but also of diseases affecting other tissues, such as psychiatric conditions, can be explained by the identified QTLs. We provided candidate effector genes for multiple phenotypes. Finally, we provided the Colon Transcriptome Explorer web application. Conclusions: We provide a large characterization of gene expression and splicing across colon subsites. Our findings provide greater etiologic insight into complex traits and diseases influenced by transcriptomic changes in colon tissue

    “We have to change our mindsets”: A qualitative study of barriers and facilitators in research collaboration across Integrated Care System organisations

    Get PDF
    Background The introduction of Integrated Care Systems (ICS) in England aimed to increase joint planning and delivery of health and social care, and other services, to better meet the needs of local communities. There is an associated duty to undertake collaborative research across ICS partners to inform this new integrated approach, which might be challenging given that organisations span health, local authority, voluntary and community sector, and research. This study aimed to explore the appetite for collaborative Research and Innovation (R&I) across ICSs, potential barriers and solutions. Methods This qualitative study involved semi-structured interviews with 24 stakeholders who held senior positions within organisations across two ICS areas (Staffordshire and Stoke-on-Trent; Shropshire, Telford and Wrekin). Interview transcripts were analysed using inductive and deductive analysis, first mapping to the Theoretical Domains Framework (TDF), then considering key influences on organisational behaviour in terms of Capability, Opportunity and Motivation from the COM-B Behaviour Change Wheel. Results There were fundamental limitations on organisational opportunities for collaborative R&I: a historical culture of competition (rather than collaboration), a lack of research culture and prioritisation, compounded by a challenging adverse economic environment. However, organisations were motivated to undertake collaborative R&I. They recognised the potential benefits (e.g., skill-sharing, staff development, attracting large studies and funding), the need for collaborative research that mirrors integrated care, and subsequent benefits for care recipients. Related barriers included negative experiences of collaboration, fear of failing and low confidence. Capability varied across organisations in terms of research skills and confidence, which reflected the range of partners (from local authorities to NHS Trusts, primary care, and academic institutions). Conclusion These findings indicate a need to shift from a culture of competition to collaboration, and to help organisations across ICS to prioritise research, and share resources and skills to mitigate the limiting effects of a constrained economic environment. This could be further explored using a systems change approach, to develop the collaborative research efforts alongside the overarching move towards integrated care

    Genome-wide characterization of mitochondrial DNA methylation in human brain

    Get PDF
    BackgroundThere is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors.ResultsWe show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study.ConclusionsWe have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction
    • …
    corecore