64 research outputs found

    Improving Student Engagement in Veterinary Business Studies

    Get PDF
    In a densely packed veterinary curriculum, students may find it particularly challenging to engage in the less overtly clinical subjects, yet pressure from industry and an increasingly competitive employment market necessitate improved veterinary student education in business and management skills. We describe a curriculum intervention (formative reflective assignment) that optimizes workplace learning opportunities and aims to provide better student scaffolding for their in-context business learning. Students were asked to analyze a business practice they experienced during a period of extra-mural studies (external work placement). Following return to the college, they were then instructed to discuss their findings in their study group, and produce a group reflection on their learning. To better understand student engagement in this area, we analyzed individual and group components of the assignment. Thematic analysis revealed evidence of various depths of student engagement, and provided indications of the behaviors they used when engaging at different levels. Interactive and social practices (discussing business strategies with veterinary employees and student peers) appeared to facilitate student engagement, assist the perception of relevance of these skills, and encourage integration with other curriculum elements such as communication skills and clinical problem solving

    Phase Ia Clinical Evaluation of the Safety and Immunogenicity of the Plasmodium falciparum Blood-Stage Antigen AMA1 in ChAd63 and MVA Vaccine Vectors

    Get PDF
    Traditionally, vaccine development against the blood-stage of Plasmodium falciparum infection has focused on recombinant protein-adjuvant formulations in order to induce high-titer growth-inhibitory antibody responses. However, to date no such vaccine encoding a blood-stage antigen(s) alone has induced significant protective efficacy against erythrocytic-stage infection in a pre-specified primary endpoint of a Phase IIa/b clinical trial designed to assess vaccine efficacy. Cell-mediated responses, acting in conjunction with functional antibodies, may be necessary for immunity against blood-stage P. falciparum. The development of a vaccine that could induce both cell-mediated and humoral immune responses would enable important proof-of-concept efficacy studies to be undertaken to address this question

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Common variants at theCHEK2gene locus and risk of epithelial ovarian cancer

    Get PDF
    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.Other Research Uni

    What Works in Conservation 2018

    Get PDF
    This book provides an assessment of the effectiveness of 1277 conservation interventions based on summarized scientific evidence. The 2018 edition contains new chapters covering practical global conservation of primates, peatlands, shrublands and heathlands, management of captive animals as well as an extended chapter on control of freshwater invasive species. Other chapters cover global conservation of amphibians, bats, birds and forests, conservation of European farmland biodiversity and some aspects of enhancing natural pest control, enhancing soil fertility and control of freshwater invasive species. It contains key results from the summarized evidence for each conservation intervention and an assessment of the effectiveness of each by international expert panels. The accompanying website www.conservationevidence.com describes each of the studies individually, and provides full references

    Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    Get PDF
    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10−5). For three cis-eQTL associations (P<1.4 × 10−3, FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10−10 for risk variants (P<10−4) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC

    Oligomerization requirements for MX2 mediated suppression of HIV-1 infection

    Get PDF
    Human myxovirus resistance 2 (MX2/MXB) is an interferon-stimulated gene (ISG) and was recently identified as a late postentry suppressor of human immunodeficiency virus type 1 (HIV-1) infection, inhibiting the nuclear accumulation of viral cDNAs. Although the HIV-1 capsid (CA) protein is believed to be the viral determinant of MX2-mediated inhibition, the precise mechanism of antiviral action remains unclear. The MX family of dynamin-like GTPases also includes MX1/MXA, a well-studied inhibitor of a range of RNA and DNA viruses, including influenza A virus (FLUAV) and hepatitis B virus but not retroviruses. MX1 and MX2 are closely related and share similar domain architectures and structures. However, MX2 possesses an extended N terminus that is essential for antiviral function and confers anti-HIV-1 activity on MX1 [MX1(N(MX2))]. Higher-order oligomerization is required for the antiviral activity of MX1 against FLUAV, with current models proposing that MX1 forms ring structures that constrict around viral nucleoprotein complexes. Here, we performed structure-function studies to investigate the requirements for oligomerization of both MX2 and chimeric MX1(N(MX2)) for the inhibition of HIV-1 infection. The oligomerization state of mutated proteins with amino acid substitutions at multiple putative oligomerization interfaces was assessed using a combination of covalent cross-linking and coimmunoprecipitation. We show that while monomeric MX2 and MX1(N(MX2)) mutants are not antiviral, higher-order oligomerization does not appear to be required for full antiviral activity of either protein. We propose that lower-order oligomerization of MX2 is sufficient for the effective inhibition of HIV-1. IMPORTANCE Interferon plays an important role in the control of virus replication during acute infection in vivo. Recently, cultured cell experiments identified human MX2 as a key effector in the interferon-mediated postentry block to HIV-1 infection. MX2 is a member of a family of large dynamin-like GTPases that includes MX1/MXA, a closely related interferon-inducible inhibitor of several viruses, including FLUAV, but not HIV-1. MX GTPases form higher-order oligomeric structures, and the oligomerization of MX1 is required for inhibitory activity against many of its viral targets. Through structure-function studies, we report that monomeric mutants of MX2 do not inhibit HIV-1. However, in contrast to MX1, oligomerization beyond dimer assembly does not seem to be required for the antiviral activity of MX2, implying that fundamental differences exist between the antiviral mechanisms employed by these closely related proteins

    The relative magnitude of transgene-specific adaptive immune responses induced by human and chimpanzee adenovirus vectors differs between laboratory animals and a target species

    Get PDF
    AbstractAdenovirus vaccine vectors generated from new viral serotypes are routinely screened in pre-clinical laboratory animal models to identify the most immunogenic and efficacious candidates for further evaluation in clinical human and veterinary settings. Here, we show that studies in a laboratory species do not necessarily predict the hierarchy of vector performance in other mammals. In mice, after intramuscular immunization, HAdV-5 (Human adenovirus C) based vectors elicited cellular and humoral adaptive responses of higher magnitudes compared to the chimpanzee adenovirus vectors ChAdOx1 and AdC68 from species Human adenovirus E. After HAdV-5 vaccination, transgene specific IFN-γ+ CD8+ T cell responses reached peak magnitude later than after ChAdOx1 and AdC68 vaccination, and exhibited a slower contraction to a memory phenotype. In cattle, cellular and humoral immune responses were at least equivalent, if not higher, in magnitude after ChAdOx1 vaccination compared to HAdV-5. Though we have not tested protective efficacy in a disease model, these findings have important implications for the selection of candidate vectors for further evaluation. We propose that vaccines based on ChAdOx1 or other Human adenovirus E serotypes could be at least as immunogenic as current licensed bovine vaccines based on HAdV-5

    Multiple components of the nuclear pore complex interact with the amino-terminus of MX2 to facilitate HIV-1 restriction

    Get PDF
    Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced post-entry inhibitor of human immunodeficiency virus type-1 (HIV-1) infection. While the precise mechanism of viral inhibition remains unclear, MX2 is localized to the nuclear envelope, and blocks the nuclear import of viral cDNAs. The amino-terminus of MX2 (N-MX2) is essential for anti-viral function, and mutation of a triple arginine motif at residues 11 to 13 abrogates anti-HIV-1 activity. In this study, we sought to investigate the role of N-MX2 in anti-viral activity by identifying functionally relevant host-encoded interaction partners through yeast-two-hybrid screening. Remarkably, five out of seven primary candidate interactors were nucleoporins or nucleoporin-like proteins, though none of these candidates were identified when screening with a mutant RRR11-13A N-MX2 fragment. Interactions were confirmed by co-immunoprecipitation, and RNA silencing experiments in cell lines and primary CD4+ T cells demonstrated that multiple components of the nuclear pore complex and nuclear import machinery can impact MX2 anti-viral activity. In particular, the phenylalanine-glycine (FG) repeat containing cytoplasmic filament nucleoporin NUP214, and transport receptor transportin-1 (TNPO1) were consistently required for full MX2, and interferon-mediated, anti-viral function. Both proteins were shown to interact with the triple arginine motif, and confocal fluorescence microscopy revealed that their simultaneous depletion resulted in diminished MX2 accumulation at the nuclear envelope. We therefore propose a model whereby multiple components of the nuclear import machinery and nuclear pore complex help position MX2 at the nuclear envelope to promote MX2-mediated restriction of HIV-1

    The utility of Plasmodium berghei as a rodent model for anti-merozoite malaria vaccine assessment.

    Get PDF
    Rodent malaria species Plasmodium yoelii and P. chabaudi have been widely used to validate vaccine approaches targeting blood-stage merozoite antigens. However, increasing data suggest the P. berghei rodent malaria may be able to circumvent vaccine-induced anti-merozoite responses. Here we confirm a failure to protect against P. berghei, despite successful antibody induction against leading merozoite antigens using protein-in-adjuvant or viral vectored vaccine delivery. No subunit vaccine approach showed efficacy in mice following immunization and challenge with the wild-type P. berghei strains ANKA or NK65, or against a chimeric parasite line encoding a merozoite antigen from P. falciparum. Protection was not improved in knockout mice lacking the inhibitory Fc receptor CD32b, nor against a Δsmac P. berghei parasite line with a non-sequestering phenotype. An improved understanding of the mechanisms responsible for protection, or failure of protection, against P. berghei merozoites could guide the development of an efficacious vaccine against P. falciparum
    • …
    corecore