125 research outputs found

    Structural Origins of Misfolding Propensity in the Platelet Adhesive Von Willebrand Factor A1 Domain

    Get PDF
    AbstractThe von Willebrand factor (VWF) A1 and A3 domains are structurally isomorphic yet exhibit distinct mechanisms of unfolding. The A1 domain, responsible for platelet adhesion to VWF in hemostasis, unfolds through a molten globule intermediate in an apparent three-state mechanism, while A3 unfolds by a classical two-state mechanism. Inspection of the sequences or structures alone does not elucidate the source of this thermodynamic conundrum; however, the three-state character of the A1 domain suggests that it has more than one cooperative substructure yielding two separate unfolding transitions not present in A3. We investigate the extent to which structural elements contributing to intermediate conformations can be identified using a residue-specific implementation of the structure-energy-equivalence-of-domains algorithm (SEED), which parses proteins of known structure into their constituent thermodynamically cooperative components using protein-group-specific, transfer free energies. The structural elements computed to contribute to the non-two-state character coincide with regions where Von Willebrand disease mutations induce misfolded molten globule conformations of the A1 domain. This suggests a mechanism for the regulation of rheological platelet adhesion to A1 based on cooperative flexibility of the α2 and α3 helices flanking the platelet GPIbα receptor binding interface

    Changes in Thermodynamic Stability of von Willebrand Factor Differentially Affect the Force-Dependent Binding to Platelet GPIbα

    Get PDF
    AbstractIn circulation, plasma glycoprotein von Willebrand Factor plays an important role in hemostasis and in pathological thrombosis under hydrodynamic forces. Mutations in the A1 domain of von Willebrand factor cause the hereditary types 2B and 2M von Willebrand disease that either enhance (2B) or inhibit (2M) the interaction of von Willebrand factor with the platelet receptor glycoprotein Ibα. To understand how type 2B and 2M mutations cause clinically opposite phenotypes, we use a combination of protein unfolding thermodynamics and atomic force microscopy to assess the effects of two type 2B mutations (R1306Q and I1309V) and a type 2M mutation (G1324S) on the conformational stability of the A1 domain and the single bond dissociation kinetics of the A1-GPIbα interaction. At physiological temperature, the type 2B mutations destabilize the structure of the A1 domain and shift the A1-GPIbα catch to slip bonding to lower forces. Conversely, the type 2M mutation stabilizes the structure of the A1 domain and shifts the A1-GPIbα catch to slip bonding to higher forces. As a function of increasing A1 domain stability, the bond lifetime at low force decreases and the critical force required for maximal bond lifetime increases. Our results are able to distinguish the clinical phenotypes of these naturally occurring mutations from a thermodynamic and biophysical perspective that provides a quantitative description of the allosteric coupling of A1 conformational stability with the force dependent catch to slip bonding between A1 and GPIbα

    Gain-of-Function Variant pPro2555Arg of von Willebrand Factor Increases Aggregate Size through Altering Stem Dynamics

    Get PDF
    The multimeric plasma glycoprotein (GP) von Willebrand factor (VWF) is best known for recruiting platelets to sites of injury during primary hemostasis. Generally, mutations in the VWF gene lead to loss of hemostatic activity and thus the bleeding disorder von Willebrand disease. By employing cone and platelet aggregometry and microfluidic assays, we uncovered a platelet GPIIb/IIIa-dependent prothrombotic gain of function (GOF) for variant p.Pro2555Arg, located in the C4 domain, leading to an increase in platelet aggregate size. We performed complementary biophysical and structural investigations using circular dichroism spectra, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy, molecular dynamics simulations on the single C4 domain, and dimeric wild-type and p.Pro2555Arg constructs. C4-p.Pro2555Arg retained the overall structural conformation with minor populations of alternative conformations exhibiting increased hinge flexibility and slow conformational exchange. The dimeric protein becomes disordered and more flexible. Our data suggest that the GOF does not affect the binding affinity of the C4 domain for GPIIb/IIIa. Instead, the increased VWF dimer flexibility enhances temporal accessibility of platelet-binding sites. Using an interdisciplinary approach, we revealed that p.Pro2555Arg is the first VWF variant, which increases platelet aggregate size and shows a shear-dependent function of the VWF stem region, which can become hyperactive through mutations. Prothrombotic GOF variants of VWF are a novel concept of a VWF-associated pathomechanism of thromboembolic events, which is of general interest to vascular health but not yet considered in diagnostics. Thus, awareness should be raised for the risk they pose. Furthermore, our data implicate the C4 domain as a novel antithrombotic drug target

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al

    Genetic epidemiology of motor neuron disease-associated variants in the Scottish population

    Get PDF
    Genetic understanding of motor neuron disease (MND) has evolved greatly in the past 10 years, including the recent identification of association between MND and variants in TBK1 and NEK1. Our aim was to determine the frequency of pathogenic variants in known MND genes and to assess whether variants in TBK1 and NEK1 contribute to the burden of MND in the Scottish population. SOD1, TARDBP, OPTN, TBK1, and NEK1 were sequenced in 441 cases and 400 controls. In addition to 44 cases known to carry a C9orf72 hexanucleotide repeat expansion, we identified 31 cases and 2 controls that carried a loss-of-function or pathogenic variant. Loss-of-function variants were found in TBK1 in 3 cases and no controls and, separately, in NEK1 in 3 cases and no controls. This study provides an accurate description of the genetic epidemiology of MND in Scotland and provides support for the contribution of both TBK1 and NEK1 to MND susceptibility in the Scottish population

    Recent and historical recombination in the admixed Norwegian Red cattle breed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparison of recent patterns of recombination derived from linkage maps to historical patterns of recombination from linkage disequilibrium (LD) could help identify genomic regions affected by strong artificial selection, appearing as reduced recent recombination. Norwegian Red cattle (NRF) make an interesting case study for investigating these patterns as it is an admixed breed with an extensively recorded pedigree. NRF have been under strong artificial selection for traits such as milk and meat production, fertility and health.</p> <p>While measures of LD is also crucial for determining the number of markers required for association mapping studies, estimates of recombination rate can be used to assess quality of genomic assemblies.</p> <p>Results</p> <p>A dataset containing more than 17,000 genome-wide distributed SNPs and 2600 animals was used to assess recombination rates and LD in NRF. Although low LD measured by r<sup>2 </sup>was observed in NRF relative to some of the breeds from which this breed originates, reports from breeds other than those assessed in this study have described more rapid decline in r<sup>2 </sup>at short distances than what was found in NRF. Rate of decline in r<sup>2 </sup>for NRF suggested that to obtain an expected r<sup>2 </sup>between markers and a causal polymorphism of at least 0.5 for genome-wide association studies, approximately one SNP every 15 kb or a total of 200,000 SNPs would be required. For well known quantitative trait loci (QTLs) for milk production traits on <it>Bos Taurus </it>chromosomes 1, 6 and 20, map length based on historic recombination was greater than map length based on recent recombination in NRF.</p> <p>Further, positions for 130 previously unpositioned contigs from assembly of the bovine genome sequence (Btau_4.0) found using comparative sequence analysis were validated by linkage analysis, and 28% of these positions corresponded to extreme values of population recombination rate.</p> <p>Conclusion</p> <p>While LD is reduced in NRF compared to some of the breeds from which this admixed breed originated, it is elevated over short distances compared to some other cattle breeds. Genomic regions in NRF where map length based on historic recombination was greater than map length based on recent recombination coincided with some well known QTL regions for milk production traits.</p> <p>Linkage analysis in combination with comparative sequence analysis and detection of regions with extreme values of population recombination rate proved to be valuable for detecting problematic regions in the Btau_4.0 genome assembly.</p

    Gastroesophageal reflux GWAS identifies risk loci that also associate with subsequent severe esophageal diseases

    Get PDF
    Funder: The Swedish Esophageal Cancer Study was funded by grants (R01 CA57947-03) from the National Cancer Institute he California Tobacco Related Research Program (3RT-0122; and; 10RT-0251) Marit Peterson Fund for Melanoma Research. CIDR is supported by contract HHSN268200782096CAbstract: Gastroesophageal reflux disease (GERD) is caused by gastric acid entering the esophagus. GERD has high prevalence and is the major risk factor for Barrett’s esophagus (BE) and esophageal adenocarcinoma (EA). We conduct a large GERD GWAS meta-analysis (80,265 cases, 305,011 controls), identifying 25 independent genome-wide significant loci for GERD. Several of the implicated genes are existing or putative drug targets. Loci discovery is greatest with a broad GERD definition (including cases defined by self-report or medication data). Further, 91% of the GERD risk-increasing alleles also increase BE and/or EA risk, greatly expanding gene discovery for these traits. Our results map genes for GERD and related traits and uncover potential new drug targets for these conditions

    Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance.

    Get PDF
    Esophageal adenocarcinoma (EAC) has a poor outcome, and targeted therapy trials have thus far been disappointing owing to a lack of robust stratification methods. Whole-genome sequencing (WGS) analysis of 129 cases demonstrated that this is a heterogeneous cancer dominated by copy number alterations with frequent large-scale rearrangements. Co-amplification of receptor tyrosine kinases (RTKs) and/or downstream mitogenic activation is almost ubiquitous; thus tailored combination RTK inhibitor (RTKi) therapy might be required, as we demonstrate in vitro. However, mutational signatures showed three distinct molecular subtypes with potential therapeutic relevance, which we verified in an independent cohort (n = 87): (i) enrichment for BRCA signature with prevalent defects in the homologous recombination pathway; (ii) dominant T>G mutational pattern associated with a high mutational load and neoantigen burden; and (iii) C>A/T mutational pattern with evidence of an aging imprint. These subtypes could be ascertained using a clinically applicable sequencing strategy (low coverage) as a basis for therapy selection.Whole-genome sequencing of esophageal adenocarcinoma samples was performed as part of the International Cancer Genome Consortium (ICGC) through the oEsophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium and was funded by Cancer Research UK. We thank the ICGC members for their input on verification standards as part of the benchmarking exercise. We thank the Human Research Tissue Bank, which is supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, from Addenbrooke’s Hospital and UCL. Also the University Hospital of Southampton Trust and the Southampton, Birmingham, Edinburgh and UCL Experimental Cancer Medicine Centres and the QEHB charities. This study was partly funded by a project grant from Cancer Research UK. R.C.F. is funded by an NIHR Professorship and receives core funding from the Medical Research Council and infrastructure support from the Biomedical Research Centre and the Experimental Cancer Medicine Centre. We acknowledge the support of The University of Cambridge, Cancer Research UK (C14303/A17197) and Hutchison Whampoa Limited. We would like to thank Dr. Peter Van Loo for providing the NGS version of ASCAT for copy number calling. We are grateful to all the patients who provided written consent for participation in this study and the staff at all participating centres. Some of the work was undertaken at UCLH/UCL who received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme. The work at UCLH/UCL was also supported by the CRUK UCL Early Cancer Medicine Centre.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.365
    • 

    corecore