425 research outputs found

    Raman signature of electron-electron correlation in chemically doped few-layer graphene

    Full text link
    We report an experimental Raman study of few-layer graphene after chemical doping achieved by a plasma process in CHF3_3 gas. A systematic reduction of both the splitting and the area of the 2D band is observed with increasing the doping level. Both effects can be ascribed to the electron-electron correlation, which on the one hand reduces the electron-phonon coupling strength, and on the other hand affects the probability of the double resonant Raman process

    Silk reinforced with graphene or carbon nanotubes spun by spiders

    Full text link
    Here, we report the production of silk incorporating graphene and carbon nanotubes directly by spider spinning, after spraying spiders with the corresponding aqueous dispersions. We observe a significant increment of the mechanical properties with respect to the pristine silk, in terms of fracture strength, Young's and toughness moduli. We measure a fracture strength up to 5.4 GPa, a Young's modulus up to 47.8 GPa and a toughness modulus up to 2.1 GPa, or 1567 J/g, which, to the best of our knowledge, is the highest reported to date, even when compared to the current toughest knotted fibres. This approach could be extended to other animals and plants and could lead to a new class of bionic materials for ultimate applications

    Heat-shock pretreatment inhibits sorbitol-induced apoptosis in K562, U937 and HeLa cells.

    Get PDF
    The aim of this study was to determine whether heat-shock pretreatment exerted a protective effect against sorbitol-induced apoptotic cell death in K562, U937 and HeLa cell lines and whether such protection was associated with a decreased cytochrome c release from mithocondria and a decreased activation of caspase-9 and -3. Following heat-shock pretreatment (42 6 0.3C for 1 hr), these cell lines were exposed to sorbitol for 1 hr. Apoptosis was evaluated by DNA fragmentation, whereas caspase-9,-3 activation, cytochrome c release and heat-shock protein70 (HSP70) were assayed by Western Blot. Sorbitol exposure-induced apoptosis in these different cell lines with a marked activation of caspase-9 and caspase- 3, whereas heat-shock pretreatment before sorbitol exposure, induced expression of HSP70 and inhibited sorbitol-mediated cytochrome c release and subsequent activation of caspase-9 and caspase- 3. Similarly, overexpression of HSP70 in the three cell lines studied prevented caspase-9 cleavage and activation as well as cell death. Furthermore, we showed that the mRNA expression of iNOS decreased during both the heat-shock treatment and heat-shock pretreatment before sorbitol exposure. By contrast, the expression of Cu-Zn superoxide dismutase (SOD) and Mn-SOD proteins increased during heat-shock pretreatment before sorbitol exposure. We conclude that, heat-shock pretreatment protects different cell lines against sorbitol-induced apoptosis through a mechanism that is likely to involve SOD family members

    High performance bilayer-graphene Terahertz detectors

    Full text link
    We report bilayer-graphene field effect transistors operating as THz broadband photodetectors based on plasma-waves excitation. By employing wide-gate geometries or buried gate configurations, we achieve a responsivity 1.2V/W(1.3mA/W)\sim 1.2V/W (1.3 mA/W) and a noise equivalent power 2×109W/Hz1/2\sim 2\times 10^{-9} W/Hz^{-1/2} in the 0.29-0.38 THz range, in photovoltage and photocurrent mode. The potential of this technology for scalability to higher frequencies and the development of flexible devices makes our approach competitive for a future generation of THz detection systems.Comment: 8 pages, 5 figures. Submitted to Applied Physics Letter

    ERK-1 MAP kinase prevents TNF-induced apoptosis through bad phosphorylation and inhibition of bax translocation in HeLa cells

    Get PDF
    Extracellular signal-regulated kinase (ERK) 1/2 signaling is involved in tumor cell survival through the regulation of Bcl-2 family members. To explore this further and to demonstrate the central role of the mitochondria in the ERK1/2 pathway we used the HeLa cellular model where apoptosis was induced by tumor necrosis factor (TNF) and cycloheximide (CHX). We show that HeLa cells overexpressing ERK-1 displayed resistance to TNF and CHX. HeLa cells overexpressing a kinase-deficient form of ERK-1 (K71R) were more sensitive to TNF and CHX. In the ERK-1 cells, Bad was phosphorylated during TNF + CHX treatment. In the HeLa wt cells and in the K71R clones TNF and CHX decreased Bad phosphorylation. ERK-1 cells treated with TNF and CHX did not release cytochrome c from the mitochondria. By contrast, HeLa wt and K71R clones released cytochrome c. Bax did not translocate to the mitochondria in ERK-1 cells treated with TNF + CHX. Conversely, HeLa wt and K71R clones accumulated Bax in the mitochondria. In the HeLa wt cells and in both ERK-1 transfectants Bid was cleaved and accumulated in the mitochondria. The caspase-8 inhibitor IETD-FMK and the mitochondrial membrane permeabilization inhibitor bongkrekic acid (BK), partially prevented cell death by TNF + CHX. Anisomycin, a c-Jun N-terminal kinases activator, increased TNF-killing. The ERK-1 cells were resistant to TNF and anisomycin, whereas K71R clones resulted more sensitive. Our study demonstrates that in HeLa cells the ERK-1 kinase prevents TNF + CHX apoptosis by regulating the intrinsic mitochondrial pathway through different mechanisms. Inhibition of the intrinsic pathway is sufficient to almost completely prevent cell death. © 2009 Wiley-Liss, Inc

    Annual green water resources and vegetation resilience indicators: Definitions, mutual relationships, and future climate projections

    Get PDF
    Satellites offer a privileged view on terrestrial ecosystems and a unique possibility to evaluate their status, their resilience and the reliability of the services they provide. In this study, we introduce two indicators for estimating the resilience of terrestrial ecosystems from the local to the global levels. We use the Normalized Differential Vegetation Index (NDVI) time series to estimate annual vegetation primary production resilience. We use annual precipitation time series to estimate annual green water resource resilience. Resilience estimation is achieved through the annual production resilience indicator, originally developed in agricultural science, which is formally derived from the original ecological definition of resilience i.e., the largest stress that the system can absorb without losing its function. Interestingly, we find coherent relationships between annual green water resource resilience and vegetation primary production resilience over a wide range of world biomes, suggesting that green water resource resilience contributes to determining vegetation primary production resilience. Finally, we estimate the changes of green water resource resilience due to climate change using results from the sixth phase of the Coupled Model Inter-comparison Project (CMIP6) and discuss the potential consequences of global warming for ecosystem service reliability.Fil: Zampieri, Matteo. Joint Research Centre; ItaliaFil: Grizzetti, Bruna. Joint Research Centre; ItaliaFil: Meroni, Michele. Joint Research Centre; ItaliaFil: Scoccimarro, Enrico. No especifíca;Fil: Vrieling, Anton. No especifíca;Fil: Naumann, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Toreti, Andrea. Joint Research Centre; Itali

    An open pilot study of zonisamide augmentation in major depressive patients not responding to a low dose trial with duloxetine: preliminary results on tolerability and clinical effects

    Get PDF
    Background: Despite multiple antidepressant options, major depressive disorder (MDD) still faces high non-response rates, eventually requiring anticonvulsant augmentation strategies too. The aim of this study was to explore such a potential role for zonisamide.Methods: A total of 40 MDD outpatients diagnosed using the Diagnostic and Statistical Manual for Mental Disorders, fourth edition criteria entered a 24 week open trial receiving duloxetine 60 mg/day for the first 12 weeks and subsequently (weeks 12 to 24) augmentation with zonisamide 75 mg/day if they did not respond to the initial monotherapy. Efficacy and tolerability were assessed using the Hamilton Scales for Anxiety and Depression (a 12 week score 6550% vs baseline defined 'non-response'), the Arizona Sexual Experience Scale, the Patient Rated Inventory of Side Effects and the Young Mania Rating Scale.Results: At week 12, 15 patients out of 39 (38.5%) were responders, and 1 had dropped out; remarkably, 14 patients out of 24 (58.3%) had achieved response by week 24. Poor concentration and general malaise were associated with non-response both at week 12 and 24 (P = 0.001), while loss of libido and reduced energy were prominent among final timepoint non-responders. Patients receiving zonisamide also experienced weight reduction (2.09 \ub1 12.14 kg; P = 0.001) independently of the outcome.Conclusions: Although only a preliminary study due to strong methodological limitations, and thus requiring confirmation by further controlled investigations, the current results indicate zonisamide may be a potential augmentation option for some depressed patients receiving low doses of duloxetine. \ua9 2011 Fornaro et al; licensee BioMed Central Ltd

    Two-dimensional enzyme diffusion in laterally confined DNA monolayers

    Get PDF
    Addressing the effects of confinement and crowding on biomolecular function may provide insight into molecular mechanisms within living organisms, and may promote the development of novel biotechnology tools. Here, using molecular manipulation methods, we investigate restriction enzyme reactions with double-stranded (ds)DNA oligomers confined in relatively large (and flat) brushy matrices of monolayer patches of controlled, variable density. We show that enzymes from the contacting solution cannot access the dsDNAs from the top-matrix interface, and instead enter at the matrix sides to diffuse two-dimensionally in the gap between top- and bottom-matrix interfaces. This is achieved by limiting lateral access with a barrier made of high-density molecules that arrest enzyme diffusion. We put forward, as a possible explanation, a simple and general model that relates these data to the steric hindrance in the matrix, and we briefly discuss the implications and applications of this strikingly new phenomenon
    corecore