13 research outputs found

    A deep Q-learning portfolio management framework for the cryptocurrency market

    Get PDF
    AbstractDeep reinforcement learning is gaining popularity in many different fields. An interesting sector is related to the definition of dynamic decision-making systems. A possible example is dynamic portfolio optimization, where an agent has to continuously reallocate an amount of fund into a number of different financial assets with the final goal of maximizing return and minimizing risk. In this work, a novel deep Q-learning portfolio management framework is proposed. The framework is composed by two elements: a set of local agents that learn assets behaviours and a global agent that describes the global reward function. The framework is tested on a crypto portfolio composed by four cryptocurrencies. Based on our results, the deep reinforcement portfolio management framework has proven to be a promising approach for dynamic portfolio optimization

    A Land-Use Perspective for Birdstrike Risk Assessment: The Attraction Risk Index

    Get PDF
    Collisions between aircraft and birds, birdstrikes, pose a serious threat to aviation safety. The occurrence of these events is influenced by land-uses in the surroundings of airports. Airports located in the same region might have different trends for birdstrike risk, due to differences in the surrounding habitats. Here we developed a quantitative tool that assesses the risk of birdstrike based on the habitats within a 13-km buffer from the airport. For this purpose, we developed Generalized Linear Models (GLMs) with binomial distribution to estimate the contribution of habitats to wildlife use of the study area, depending on season. These GLMs predictions were combined to the flight altitude of birds within the 13-km buffer, the airport traffic pattern and the severity indices associated with impacts. Our approach was developed at Venice Marco Polo International airport (VCE), located in northeast Italy and then tested at Treviso Antonio Canova International airport (TSF), which is 20 km inland. Results from the two airports revealed that both the surrounding habitats and the season had a significant influence to the pattern of risk. With regard to VCE, agricultural fields, wetlands and urban areas contributed most to the presence of birds in the study area. Furthermore, the key role of distance of land-uses from the airport on the probability of presence of birds was highlighted. The reliability of developed risk index was demonstrated since at VCE it was significantly correlated with bird strike rate. This study emphasizes the importance of the territory near airports and the wildlife use of its habitats, as factors in need of consideration for birdstrike risk assessment procedures. Information on the contribution of habitats in attracting birds, depending on season, can be used by airport managers and local authorities to plan specific interventions in the study area in order to lower the risk.Collisions between aircraft and birds, birdstrikes, pose a serious threat to aviation safety. The occurrence of these events is influenced by land-uses in the surroundings of airports. Airports located in the same region might have different trends for birdstrike risk, due to differences in the surrounding habitats. Here we developed a quantitative tool that assesses the risk of birdstrike based on the habitats within a 13-km buffer from the airport. For this purpose, we developed Generalized Linear Models (GLMs) with binomial distribution to estimate the contribution of habitats to wildlife use of the study area, depending on season. These GLMs predictions were combined to the flight altitude of birds within the 13-km buffer, the airport traffic pattern and the severity indices associated with impacts. Our approach was developed at Venice Marco Polo International airport (VCE), located in northeast Italy and then tested at Treviso Antonio Canova International airport (TSF), which is 20 km inland. Results from the two airports revealed that both the surrounding habitats and the season had a significant influence to the pattern of risk. With regard to VCE, agricultural fields, wetlands and urban areas contributed most to the presence of birds in the study area. Furthermore, the key role of distance of land-uses from the airport on the probability of presence of birds was highlighted. The reliability of developed risk index was demonstrated since at VCE it was significantly correlated with bird strike rate. This study emphasizes the importance of the territory near airports and the wildlife use of its habitats, as factors in need of consideration for birdstrike risk assessment procedures. Information on the contribution of habitats in attracting birds, depending on season, can be used by airport managers and local authorities to plan specific interventions in the study area in order to lower the risk

    An evolutionary approach to the design of experiments for combinatorial optimization with an application to enzyme engineering

    Get PDF
    In a large number of problems the high dimensionality of the search space, the vast number of variables and the economical constrains limit the ability of classical techniques to reach the optimum of a function, known or unknown. In this thesis we investigate the possibility to combine approaches from advanced statistics and optimization algorithms in such a way to better explore the combinatorial search space and to increase the performance of the approaches. To this purpose we propose two methods: (i) Model Based Ant Colony Design and (ii) Naïve Bayes Ant Colony Optimization. We test the performance of the two proposed solutions on a simulation study and we apply the novel techniques on an appplication in the field of Enzyme Engineering and Design

    A Deep Reinforcement Learning Approach for Automated Cryptocurrency Trading

    No full text
    Part 7: Deep Learning - Convolutional ANNInternational audienceNowadays, Artificial Intelligence (AI) is changing our daily life in many application fields. Automatic trading has inspired a large number of field experts and scientists in developing innovative techniques and deploying cutting-edge technologies to trade different markets. In this context, cryptocurrency has given new interest in the application of AI techniques for predicting the future price of a financial asset. In this work Deep Reinforcement Learning is applied to trade bitcoin. More precisely, Double and Dueling Double Deep Q-learning Networks are compared over a period of almost four years. Two reward functions are also tested: Sharpe ratio and profit reward functions. The Double Deep Q-learning trading system based on Sharpe ratio reward function demonstrated to be the most profitable approach for trading bitcoin

    ARI computed for Venice Marco Polo airport (VCE) in the period 2006–2011 compared to birdstrike rate per 10,000 aircraft movements.

    No full text
    <p>A clear seasonal pattern of the ARI risk index is visible, with higher values in late summer months. A significant correlation between ARI and the birdstrike rate computed for VCE was found (Spearman test, P<0.05).</p

    Model selected per group of species and relative number of parameters (K), Log-Likelihood, Deviance explained and loss of deviance explained by excluding from the model a covariate at a time.

    No full text
    <p>Habitat covariates contributing most to attract each group of species are highlighted in bold.</p><p>Model selected per group of species and relative number of parameters (K), Log-Likelihood, Deviance explained and loss of deviance explained by excluding from the model a covariate at a time.</p
    corecore