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Abstract

In a large number of problems the high dimensionality of the search space,

the vast number of variables and the economical constrains limit the ability

of classical techniques to reach the optimum of a function, known or un-

known. In this thesis we investigate the possibility to combine approaches

from advanced statistics and optimization algorithms in such a way to better

explore the combinatorial search space and to increase the performance of

the approaches. To this purpose we propose two methods: (i) Model Based

Ant Colony Design and (ii) Näıve Bayes Ant Colony Optimization. We test

the performance of the two proposed solutions on a simulation study and

we apply the novel techniques on an appplication in the field of Enzyme

Engineering and Design.
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Introduction

In the last decade, biology has witnessed a radical paradigm shift from

a descriptive and analytical science to an engineering science which has led

to the emergence of the new scientific area of synthetic biology (SB). In this

development, biological systems have shown to be characterized by a highly

hierarchical organization involving a large number of interwoven parameters

that need to be all simultaneously optimized in order to achieve the desired

objective. A good example is the so called Enzyme Engineering Design. The

interest in enzyme (re)design lies in the fact that enzymes are capable of

promoting (i.e. catalyze) chemical reactions and are responsible for the vast

majority of chemical reactions occurring within a cell. Within this frame-

work, several groups worldwide have developed a number of techniques to

redesign enzymes and alter their functionality and specificity in order to ex-

ploit them for useful purposes. However, current techniques are not capable

of redesigning enzyme functionality effectively.

The main problem of enzyme engineering and design is the very large

experimental space defined by an enormous number of variables and their

possible levels. In addition, variables usually interact, with long range and

epistatic effects. However, the number of experimental points that can be

tested in a lab is severely limited by economic and time constraints. Sta-

tistical science plays a pivotal role to engineer biological systems when a

comprehensive knowledge is missing or the simultaneous optimization of a

large number of variables is required. However, in many optimization prob-

lems the large domain and the huge experimental space limit the ability of

classical approaches to reach the desired objective (i.e. the optimum of a

given fitness function). Thus, there is the urgent need to develop novel pro-
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cedures for the smart exploration of the sequence space in order to identify

the best enzyme variants with a reasonable effort (Chapter 1).

The motivation of this thesis is an ongoing case study based on a library of

95 different amino-acid sequences of 50 amino-acids, called pseudo-domains,

which yield a full-length protein (or enzyme) of 200 amino-acids generated

by assembling 4 pseudo-domains at a time (Chapter 1). The number of all

the theoretically different full-length random enzymes to be screened is rep-

resent by all the permutations (with repetition) of 95 elements in 4 positions,

which is equal to 954 = 8.1 × 107. Thus the search space composed by all

the candidate enzymes is enormous. The aim of this study is to develop

a method for finding enzymes with a biological functionality. In fact, the

methodology might help to improve existing enzymes or to design novel ones

for specific applications in different fields such as medicine and fine-chemical

production. The problem we are facing can be considered as a discrete op-

timization problem and the main aim is to find the optimum of a function,

or a good approximation of it, in a very large discrete search space where we

do not have a priori knowledge about its principal features.

The first step of this thesis is to investigate the performance of some

classical approaches to tackle our biological problem and its complexity. Af-

ter transforming our discrete problem into a continuous one (Chapter 2) by

recent developments of the well known statistic technique called Multidi-

mensional scaling, we develop a 3-stage approach that deals with continuous

variables and uses some concept from Response Surface Methodology. How-

ever, this method fails in the approximation of the response surface and it

does not have good performance in terms of prediction. This failure is pos-

sibly due to the very nature of the classical methods devised for cases when

a large number of experimental units were measured and a small number of

features had to be considered, whereas we are in the presence of a so called

“large p, small n“ problem [39]. We give an overview of some the most

important techniques for “large p, small n“ problems in Chapter 3.

As a consequence of this failed attempt we have been forced to face the

discrete nature of the optimization problem itself. Optimization problems

that involve discrete variables are called Combinatorial Optimization (CO)
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problems (Chapter 4). In this thesis, we have investigated some so-called

metaheuristic algorithms that serve the purpose, with the ultimate aim to

test the possibility of exploiting bio-inspired algorithms combined with ad-

vanced statistical techniques to search in a discrete sequence space for a

target structure. More specifically, in Chapter 4 we describe the Ant Colony

Optimization (ACO) [21] [25] [22] approach. Ant algorithms are inspired

by the observation of real ant colonies. In ACO algorithms, a colony of

artificial ants (agents) cooperate in finding solutions to a difficult discrete

minimization problem. A solution is expressed as minimum cost (shortest)

path through the states of the problem in accordance with the problems con-

straints. Starting from an initial state selected according to some problem

dependent criteria, each artificial ant builds a path. A single ant is able to

build a path, but only the cooperation among all the agents of the colony con-

currently building different paths is able to find high quality solutions. ACO

is based on probabilistic matrices where the best path has higher probability

to be chosen.

This thesis endeavours to define a new approach within Design of Exper-

iments for optimization based on Evolutionary Model Based Experimental

Design [29] [10] [5], that exploits a combination of approaches from Design

of Experiments and metaheuristic algorithms to guide the exploration of the

space. We propose two different approaches (Chapter 5):

– Model Based Ant Colony Design (MACD);

– Näıve Bayes Ant Colony Optimization (NACO).

which we now briefly describe.

1. MACD is based on the idea behind closed loop optimization [42] and

the procedure boosts an optimization algorithm by a statistical model.

More precisely, MACD combines:

– MAX −MIN Ant System [68]. MMAS is coupled with a local

search (Simulated Annealing [41] [13]) to increase the performance

of the algorithm;
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– linear regression model with binary predictive variables, which is

estimated from observed data by the least squares method.

MACD couples real experimentation with simulated experiments. So-

lutions are generated by an algorithm in computer simulation, but their

evaluation is achieved by a physical experiment. Evaluations are fed

back to the simulative phase of the approach and its generation of sub-

sequent solutions is a function of these. This enables the method to

explore the complex relationships between input and output variables.

The main advantage of this is that the system becomes more observ-

able, since computer runs are generally easier and cheaper than mea-

surements taken in a physical set-up, and the exploration can be carried

out more thoroughly. Our method improves upon existing methods in

two main directions:

(i) Thanks to the statistical model, we can simulate the problem and

move in the search space as many times as we want, improving

the solutions step by step;

(ii) The iterated refinement of the predictive model provides the opti-

mization algorithm with predictive capability of the model result-

ing in an increased accuracy during the optimization process.

2. In order to learn the most about the system under study using the

least number of trials, we tackle the problem using a Näıve Bayes Clas-

sifier [56] combined with Ant Colony Optimization. We have called this

approach Näıve Bayes Ant Colony Optimization (NACO). NACO ex-

tracts the information from the data using the Näıve Bayes Approach

and explores the search space by the ACO algorithm. Considering a

sequence of elements (i.e. a string of letters), Näıve Bayes Approach

identifies which elements affect mostly the response of the system for

each position and the optimization algorithm selects the best path,

i.e. the connection between the elements in the sequence in the set of

possible candidate sequences. In this context, NACO improves upon

the limits of the Näıve Bayes Classifier. In Näıve Bayes Classifier it is
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impossible to understand the relations between the elements. The com-

bination of ACO and Näıve Bayes Approach can avoid this problem. A

path is composed by nodes and arcs. Considering the previous string

of letters, nodes can be seen as letters and an arc connecting a letter

to the next one can be seen as the relation that exists between the two

letters in a sequence. In other words, ACO can capture the interac-

tion existing between letters in a sequence. Moreover, an advantage

of NACO is that it is not computationally intensive. This advantage

allows the researcher to be fast in the creation and analysis of possible

solutions.

Before starting the physical experimentation, we have tested the perfor-

mance of our proposed methods on 3 different benchmark functions (Chapter

5). MACD and NACO have shown good results in terms of convergence, in

fact the two approaches outperform standard algorithms in the search of

the optimum. MACD has shown good results in 2 of the benchmark func-

tions and satisfactory result in the third one. NACO has shown satisfactory

results in all the benchmark functions and is comparable with other algo-

rithms. The analysis of the performance of the Model Based Ant Colony

Design and the Näıve Bayes Ant Colony Optimization have demonstrated

that our approaches are able to reach good points in few iterations for the

three benchmark functions (Chapter 5).

After the simulation study, we have applied MACD and NACO to the

problem of Enzyme Engineering Design (Chapter 6). Starting from a set

of 96 randomly chosen enzymes, we have performed 5 generations for each

approach in a sequential way. The purpose is to study the evolution of the

generations and the performance of the two techniques in a real application.

MACD has demonstrated to move toward good regions of the search space,

generation by generation the distribution of the response was moving to

higher values. NACO has reached high values of the Score in few generations

and has confirmed the ability to explore the search space in a exhaustive way.

The two approaches have required a very small number of experimental points

to reach the optimality region of the search space and have demonstrated the
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ability to tackle problems where a small number of experimental points are

measured and a large number of parameters has to be considered.

From our simulative and experimental studies on the performance of

MACD and NACO we have demonstrated that the two approaches are able

to:

– learn about a complex system composed by several experimental input

variables with patterns of interactions;

– reach an approximation of the optimum of the unknown functions with

few iterations;

– explore a very large part of the search space. In the case of MACD , this

happen because of being able to predict the response over a large part

of the search space. In the case of NACO, because of being able to

extract information on that would not be used otherwise;

– reduce the number of real experimentations in order to save money and

time.

Moreover we were successful in creating an interactive process where the

dialogue between design and laboratory experimentation at each generation

has created a path in the combinatorial search space that leads toward a

region of optimality.



Chapter 1

The Motivating Problem:

Designing Enzyme

Functionality

1.1 Enzyme Engineering Design

At the origin, the purpose that started this thesis was to find a method-

ological approach to tackle the problem of (re)designing enzyme functionality

using secondary structure domains.

The interest in enzymes (re)design lies in the fact that enzymes are ca-

pable of promoting (i.e. catalyzing) chemical reactions and are responsible

for the vast majority of chemical reactions occurring within a cell. One of

the striking feature of enzymes is their specificity and effectiveness, indeed a

particular enzyme is capable of recognizing a specific substrate among many

closely related ones and is capable of promoting chemical reactions under

mild conditions (pH 7, room temperature, 1 atmosphere). To this regard,

enzymes are considered the most appealing catalysts to perform chemical re-

actions for human purposes such as synthesis of high-value compounds (e.g.

pharmaceuticals) or biodegradable polymers (e.g. polylactic acid or polyhy-

droxyalkanoate).

Within this framework, several groups worldwide have developed a num-
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ber of techniques to redesign enzymes and alter their functionality and speci-

ficity in order to exploit them for useful purposes. However, current tech-

niques are not capable of redesigning enzyme functionality effectively. Thus,

there is the urgent need to develop novel procedures for the smart exploration

of the sequence space in order to identify the best enzyme variants with a

reasonable effort.

1.2 Enzyme function and structure

Enzymes are a specific class of proteins, whose main function is to pro-

mote chemical reactions. Enzymes are capable to catalyze a broad range of

reactions ranging from organic molecule synthesis such as antibiotic [28] to

degradation of pollutants [59].

From the structural prospective, enzymes are linear polymers built from

series of up to 20 different L-α-amino-acids arranged in a linear chain (pri-

mary structure), which folds into a number of transient states (secondary

structure), to yield a well-defined three-dimensional structure (tertiary struc-

ture) (Figure 1.1). The three-dimensional shape of a given enzyme ultimately

defines the enzymes function so that redesigning enzyme activity is ultimately

linked to redesigning enzyme shape. Operatively, enzyme tertiary structure

is determined by the secondary structure which is in turn determined by the

linear arrangement of amino acids. Thus, redesigning enzyme function can

be accomplished by redesigning either the enzyme primary or the secondary

structure.

Summarysing, an enzyme Pi is a sequence of monomers from a set A ≡
{a1, a2, a3, . . . , a20} joint together to form a complex string (i.e. primary

structure), which may differ in length, amino-acid composition and sequence.

Each string is associated to a secondary and tertiary structure, which defines

enzyme activity.

The main problem of enzyme engineering and design is the large experi-

mental space defined by an enormous number of variables (e.g. amino-acid

composition and order, 3D interactions among secondary domains, and other

things) and their possible levels. In addition, variables usually interact in a
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1      2       3      4                        19   20 
!AA (a) 

(b) 

(c) 

Figure 1.1: Structural prospective of a enzymes: (a) Primary Structure (b) Sec-
ondary Structure (c) Tertiary Structure.
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non-linear way; with long range and epistatic effects. Furthermore, the num-

ber of experimental points that can be tested in a lab is severely limited by

economic and time constraints.

1.3 Protein engineering and design: state-of-

the-art

The redesign of enzyme specificity and performance has long tempted

biochemists due to the enormous potential of enzymes as fine catalysts op-

erating under mild conditions. Enzyme Engineering and Design can be seen

as a walk through a multi-dimensional experimental space to find mutants

with improved or novel properties. There are 3 general strategies for enzyme

engineering:

– rational design (RD) [66];

– directed evolution (DE ) [27] also known as irrational design or applied

molecular evolution:

– high-throughput screening (HTS ) [62].

Rational design (Figure 1.2(a)) relies on a detailed knowledge of the re-

lationship between structure and function so that tailored, site-specific mu-

tations can be performed to rationally alter the function of the target pro-

tein. Despite the recent success reported in literature [62], a comprehensive

description of the structure-function relationship is rarely available, which

severely limits the deployment of rational design strategies.

Conversely, directed evolution (Figure 1.2(b)) mimics natural evolution

by means of iterative cycles of mutation-selection-amplification, which al-

lows the simultaneous testing of a vast library of candidate mutants for a

priori defined function without a priori knowledge. The great advantage of

directed evolution techniques is that no prior structural knowledge of a en-

zyme is required, nor is it necessary to be able to predict what effect a given

mutation will have on target enzymes function. There are two fundamental
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Improved mutant 

Investigation of 
structure-function 

relationship 
(optional) 

Random mutations 

High-throughput Assay 

(c) 

Investigation of 
structure-function 

relationship 

Site-directed 
mutagenesis 

Functional Assay 

(a) 

Construction of large 
mutant library without a 

priori knowledge 

Identification of parent sequence 
(optional for totally random libraries) 

Selection Amplification 

(b) 

Figure 1.2: Schematic representation of the main approaches to molecular design
and engineering: (a) Rational Design (b) Direct Evolutions (c) High Throughput
Screening.
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requirements to carry out directed evolution: the first is the availability of

physical link between the genotype and the phenotype. The second relies on

the availability of a suitable screening procedure to enrich the initial enzyme

population of those sequences satisfying the selection criteria.

Despite the numerous accomplishment [67], DE cannot be effectively ex-

ploited to re-design or engineer enzymes (e.g. enzymes embedded with a

catalytic function) due to the lack of suitable selection methods.

The high throughput screening (Figure 1.2(c)) approach relies on the

generation of a vast library of candidate mutants, that are individually tested

for the desired function. Despite the recent success [69], screening procedures

can explore only an infinitesimal number of mutants with respect to all the

theoretical ones. Indeed, the number of theoretically possible mutants is

MH = 19H
L!

(L−H)!(H)!
,

where MH is the theoretical number of mutants for a given protein of length

L assuming H mutations. It is easy to calculate that for an enzyme of only

200 amino acids assuming 3 mutations per mutant there are more than 1010

theoretically possible mutants.

Due to the limitations described above, there is the urgent need to develop

novel procedures for the smart exploration of the sequence space in order to

identify best mutants with reasonable effort. To tackle this problem, we pro-

pose to combine approaches from Design of Experiments and metaheuristic

algorithms to guide the smart exploration of the sequence space.

The methodological approach adopted in this work relies on the (re)design

of enzymes functionality using short amino-acid sequences rather than oper-

ating on individual amino acid at primary structure level.

Accordingly, we designed a library of 95 different amino-acid sequences of

50 amino-acids called pseudo-domains, that are subsequently assembled to

yield a full-length protein of 200 amino-acids (i.e. candidate solution) gener-

ated by assembling 4 pseudo-domains at a time, according to the algorithms

described in Chapter 5.
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Assay Evaluation 

Initial Library of 95 
pseudo-domains 

Selected Set of 
Candidate Enzymes 

Evaluated Enzymes 

Score1 

Score2 

Score3 

Application of the Search Procedure 

Figure 1.3: General framework of the procedure.

The possible number of theoretically different full-length random enzymes

to be screened is represent by all the permutations (with repetition) of 95

elements in 4 positions are 954 = 8.1× 107.

1.4 Designing, evaluating and scoring random

pseudo-domains and candidate enzymes

The library of 95 different pseudo-domains were generated according to

the methods described by [55], which yield 95 completely random pseudo-

domains with no significant homology with extant enzymes.

Pseudo-domains similarity matrix calculation

Despite the difference in primary sequence of pseudo-domains, it is possi-

ble to elaborate a similarity metric which defines a 95×95 matrix describing

the relative similarity between any two pseudo-domains. The first step is

to calculate pseudo-domains secondary structure using PSIPRED software

[52]. PSIPRED predicts whether a given pseudo-domains adopts an helix,

coiled-coil or beta-sheet conformation. The typical output of the PSIPRED

algorithm is presented in Figure 1.4.

The output reported in Figure 1.4 states that the enzyme under inves-

tigation adopts a coiled-coil conformation (C) at positions 1, 19 and 20; a

beta-sheet conformation (E) at positions 2-5 and 14-18 and an helix confor-
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Conf: Confidence (0=low, 9=high)

Pred: Predicted secondary structure (H=helix, E=strand, C=coil)

AA: Target sequence

# PSIPRED HFORMAT (PSIPRED V3.0)

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AA: Y H C T Y S Q S E P G G G K T Q T Y S C

Pred: C E E E E H H H H H H H H E E E E E C C

Conf: 9 1 3 3 2 0 1 3 8 9 9 9 7 1 1 6 8 8 8 2

Figure 1.4: PSIPRED output of a test protein.

mation at positions 6-12.

The second step is to use secondary structure profile of pseudo-domains

calculated using PSIPRED to calculate the similarity among different pseudo-

domains according to the method proposed by [19]. Briefly, the similarity of

pseudo-domain was calculated using secondary structure prediction by align-

ing all pseudo-domains in a pair-wise fashion and calculating similarity score

by a two-step procedure as follows:

1 - Position-related score calculation:

si,j = IF (predi,j = predi,r) confii,j ELSE {0}
where si,,j is the position-score of the i-th amino acid of the j-th pseudo-

domain, predi,j is the secondary prediction of the i-th amino-acid of the

j-th pseudo-domain whereas (predi,r) is the secondary prediction of the

i-th amino-acid at the same position in the r-th pseudo-domain with

r 6= j. When the IF statement is satisfied, the output value is the

correspondent confidence value confii,j of the i-th amino acid of the

j-th pseudo-domain, otherwise the output value is zero.

2 - Global score calculation:

Sj =
∑50

i=1 si,j

which is a summation of individual position-scores over the entire pseudo-

domain length.

It is noteworthy that the pair-wise alignment generates a non-symmetric

matrix. This is due to the fact that the IF statement output value is equal
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to the confidence value of the query sequence. As an example consider two

pseudo-domains j and r which adopt the same predicted conformation at

position i = 34 with confidence 6 and 9 respectively. When comparing the

34-th amino-acid of pseudo-domains r versus j the IF statement output value

is 6, whereas it yields 9. When comparing the 34-th amino acid of pseudo-

domains j versus r. Although equivalent, the two-halves of the similarity

matrix are not the same. In according with the biologists, we chose the

upper half as similarity matrix to be used in sequel of the thesis.

Candidate enzymes scoring function

The rationale beyond the method proposed relies in redesigning enzymes

functionality starting from secondary domains to circumvent the limitations

described in Paragraph 1.3. Accordingly, the scoring function adopted to

rank candidate solutions relies on the evaluation of a distance metric between

any given candidate solution and a desired target structure not included in

the attainable search space derived from all the possible permutation of the

95 pseudo-domains in all positions (ca. 81mln candidate solutions). The

scoring function employed was the one described by [18]. The theoretical

range of the score, or response, is from 0 to 1000.

Combinatorial constraints to designing random enzymes

Candidate enzymes shall be experimentally characterized in terms of ex-

pression, solubility, structural features and enzymatic activity. In order to

be experimentally tested, candidate enzymes shall respect the following bio-

logical restrictions:

i. The number of cysteine residues shall be no higher than 9 and different

from 5 and 7;

ii. The percentage of coil shall not be higher than 70.

These constraints should be considered in the proposed approaches.
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1.5 Relevance of the research

The present research is relevant both for statistics and the biological

sciences.

From a methodological perspective, the ultimate aim of this work is to test

the possibility of exploiting bio-inspired algorithms combined with advanced

statistical techniques to search in a discrete sequence space for a target struc-

ture. We wish to define a new approach within Design of Experiments for

optimization based on the Evolutionary Model Based Experimental Design

that has been proposed in [29] [10] [5], which is able to solve problems where

the number of variables vastly increases.

The issue of high dimensionality represents a challenging topic for statis-

ticians with many problems that are still unsolved. The large number of

variables and the scarcity of observations characterize the current state of

real applications, therefore, new methods and theories need to be developed.

The thesis endeavours to overcome classical methods in optimizing high di-

mensional systems, giving a new flexible tool for tackling complex scenarios.

With respect to the biological sciences, the relevance of this research is

two-fold. First, this research addresses the problem of developing a novel

method to effectively explore enzyme sequence space to improve or redesign

enzyme functionality. The objective is to go beyond the state-of-the-art and

circumvent the limitations of current enzyme engineering techniques that

- despite the differences - rely on the random exploration of the sequence

space. This approach is labour-intensive and time-consuming and represents

a concrete bottle-neck to the development of improved enzymes.

Second, we start from a library of 95 non-natural completely random

pseudo-domains with no significant homology to extant enzymes. The straight-

forward consequence is that the candidate enzymes produced starting from

this dataset will be themselves novel and with no significant homology to

extant enzymes. Thus, this approach allows the exploration of the sequence

space that has not been sampled during the course of natural evolution [14]

contributing to the age-old discussion in theoretical biology concerning con-

tingency and determinism [51]; namely are natural enzymes the optimal solu-
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tion found by natural evolution? or rather natural enzymes represent simply

a suitable solution, a sort of frozen accident?

The debate between contingency and determinism is of paramount im-

portance in theoretical biology, since it relates to the possibility that nature

has explored only a tiny fraction of what is possible and attainable in the

biological realm.





Chapter 2

An Approach to Optimization

by Some Classical Statistical

Methods

2.1 Introduction

In the previous chapter we present the nature of the problem. The aim

is to find an optimum in a discrete search space. The method that we want

to use has to be able to move in a large search space.

In this chapter, we investigate the performance of classical statistical

methods in the face of our problem. For this purpose, we want to change a

discrete problem into a continuous one and we develop a 3-stage method:

– We start with a similarity (or dissimilarity) matrix;

– We apply a recent development of Multidimensional Scaling (MDS) [46]

[9] so that the set of “objects” we start with can be represented by

points in a low dimensional space;

– We fit a polynomial regression to our data.

In our problem each enzyme is a sequence of 4 positions. For each position

we can select an element (pseudo-domain) from a set of 95 objects. The
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discrete nature of the problem is evident. Our goal is to transform the 95

objects (that can be selected in each position) in points of an n-dimensional

Euclidean space (e.g. 2-dimensional space). Therefore, the sequence with

4 positions can be seen as a value from R4n, i.e. 4 × n real numbers that

specify the coordinates of a point in a (n × 4)-dimensional space. For this

aim, we apply a recent method from MDS, called Scaling by MAjorizing a

COmplicated Function (SMACOF) [15], to a 95 × 95 matrix that describe

the relative similarity between any two objects (Chapter 1). Notice that,

in this context, MDS is applied to convert the problem from a discrete to a

continuous one. Traditionally, MSD is a visualization tool for reducing high

dimensional data in low dimensions with the aim of discovering meaningful

information obscured by the intrinsic complexity of the data.

For this point onwards, we can use polynomial regression with the purpose

of exploring the response surface by Response Surface Methodology (RSM)

[58]. RSM explores the shape of the dependence relation of the response on

a set of a quantitative factors and uncovers the particular combination of

factors levels that yields the maximum or minimum response.

In the first part of this chapter we introduce some basic concepts of Design

of Experiments (DoE) [3], that will be applied later, we present the SMACOF

and we describe RSM.

2.2 Design of Experiments

In the last decade, researches have devoted a lot of effort to increase their

ability to perform complex experiments. A great deal of experimentation

is an efficient method of learning about the world. In fact, in developing

a scientific theory, testing a research hypothesis or getting insights into the

process underlying an observable phenomenon, several questions may be ad-

dressed by conducting experiments. In conducting experiments, most of the

system elements are supposed to be under the control of the investigator,

who can then strongly affect the accuracy of the experimental result. The

investigator plans (designs) the experiments, by deciding on what has to be

experimentally evaluated and how the experiments should be conducted. The
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validity of the interpretation of the experimental results strongly depends on

the elements selected for the analysis and on the laboratory protocols chosen

to conduct the experimentation. In several research areas, such as biology,

chemistry, or material science, experimentation is complex, extremely expen-

sive and time consuming, so an efficient plan of experimentation is essential to

achieve good results and avoid unnecessary waste of resources. The statisti-

cal theory that deals with this problem is the so called Design of Experiments

(DoE) [3]. An accurate statistical design of the experiments is important also

to tackle the uncertainty in the experimental results derived from systematic

and random errors that frequently obscure the effects under investigation.

In DoE, fundamental importance is attached to the model relating the

responses observed in the experiments to the experimental factors. The pur-

pose of the experiments is often to find out about the model, including its

adequacy. Frequently the model is then used to optimize the output.

An experimental design can be described as a selected set of experimental

points where different compositions and different laboratory conditions are

tested. Formally, an experimental design can be written as

X = (x1, . . . ,xn)′

where n is the number of selected experimental points and each xi is a p-

vector

xi = (xi1, . . . , xip) with i = 1, . . . , n

describing the particular combination of p factors that are tested in that

particular trial may yield the experimental results

y = (y1, y2, . . . , yn).

In a common and schematic way the system under study may be repre-

sented in Fig. 2.1. In the figure, the xi vector describe the i-th experimental

point that is a combination of the relevant p factors that independently or in

relations among them (interactions) can affect the result of the experimenta-

tion. In this scheme the factors zui, u = 1, . . . , v represent variables that can
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Figure 2.1: General representation of a system.

affect the results of the experimentation but are not under the control of the

investigator, and the elements εi describe the experimental errors. Finally

the result, or response of the i-th experimentation, is denoted by yi.

Experiments can be designed to answer a variety of questions. In fact

the investigator is asked to determine the number of experimental points (n)

to test for achieving reliable results; how many factors should be considered

(p) and how many levels (or the range of variation for continuous factors);

and also which factor interactions should be investigated. In analysing and

modelling the resulting data the investigator is further asked to infer which

factor and factor interactions are the most influential on the responses; which

combination can optimize the response value; which combination gives the

smallest variability in the response; and finally, given the systematic and

random errors in the experimentation, which level of uncertainty character-

izes the estimation of relevant parameters and overall interpretation of the

results.

In the case of discrete variable, the reference model is the so called Anal-

ysis of Variance (ANOVA). ANOVA is a collection of statistical models in

which the observed variance in a particular variable is partitioned into com-

ponents attributable to different sources of variation to the effect of testing

equality of effects and existence of interactions.

When the main objective of experimentation is to optimize the response

of the system, the Response Surface Methodology is commonly adopted.
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2.2.1 Response Surface Methodology

The typical application of Response Surface Methodology (RSM ) [58] is

where several input variables potentially influence some performance measure

or quality characteristic of a product or process. This performance measure or

quality characteristic is called the response and is measured on a continuous

scale.

Suppose for instance, that p variables taken at different levels (x1, x2, . . . , xp)

can give rise to a particular response. This response represents the output

of the system and is measured by an identified variable Y . The dependence

relation between the variables and the response can be described by

Y = f(x1, x2, . . . , xp) + ε (2.1)

where f may be a smooth function of x1, x2, . . . , xp and ε represents a

random noise in the observable response. The expected response E(Y ) =

f(x1, x2, . . . , xp) is called response surface. In Fig. 2.2, the usually graphical

representation of E(Y ) in the case of two variables, x1 and x2, is plotted.
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Figure 2.2: A response surface for two factor design.
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Because the form of the true response function f is unknown we must

approximate it. Usually, a polynomial model in some relatively small region

of the independent variable space is appropriate. The general motivation for

a polynomial approximation for the true response function f is based on the

Taylor series expansion.

The simplest polynomial model to explore the space approximating the

Function 2.1 is the first-order polynomial model,

Y = β0 + β1x1 + β2x2 + . . .+ βpxp + ε (2.2)

where p variables are supposed to affect the response in a linear way without

interactions, for each k the parameters βk measure their influence of variable

k on y.

The first-order polynomial model is likely to be appropriate when we are

interested in approximating the true response surface over a relatively small

region of the independent variable space in a location where there is little

curvature in f . Often the curvature in the true response surface is strong

enough that the first-order model is inadequate. A second-order polynomial

model will likely be required in these situations.

The second-order polynomial model is a flexible model to describe ex-

perimental data in which nonlinear terms are present. The nature of the

response surface depends on the signs and magnitudes of the coefficients in

the following model:

Y = β0 +
∑

i=1,...,p

βixi +
∑

i=1,...,p

βiix
2
i +

∑
i<j

βijxixj + ε. (2.3)

The approach of least squares estimates for the β parameters is then

generally used and the adequacy of the fitted surface is evaluated with the

ANOVA methodology.

In the sequel of the chapter we will use these concepts of RSM that are

related to linear regression analysis.



MULTIDIMENSIONAL SCALING 35

2.3 Multidimensional Scaling

Another important technique that we use in this part of the work is the

Multidimensional Scaling. From a general point of view, multidimensional

scaling (MDS) is a set of methods for discovering hidden structures in mul-

tidimensional data. Based on a dissimilarity matrix derived from variables

measured on objects (points) as input entity, these dissimilarity measures

are mapped on a low dimensional (typically two or three dimensions) spatial

representation.

The traditional way of performing MDS is referred to as classical scaling

[71] which is based on the assumption that the dissimilarities are precisely

Euclidean distances without any additional transformation.

Starting from an N ×N dissimilarity matrix (∆ = [δij]), where N is the

number of points (objects) and δij is the dissimilarity between point i and

j we can apply MDS. The dissimilarity matrix (∆) should agree with the

following constraints:

– symmetry (δij = δji);

– nonnegativity (δij ≥ 0);

– zero diagonal elements (δii = 0).

The objective of MDS techniques is to construct a configuration of the

given data in a low dimensional Euclidean space, while each distance be-

tween a pair of points in the configuration is approximately equal to the

corresponding dissimilarity value. The output of MDS algorithms could be

represented as an N ×L configuration matrix X, whose rows represent data

points xi (i = 1, ..., N) in an L-dimensional space.

To evaluate how well the given points are configured in the L-dimensional

space we can use suggested objective functions of MDS, for instance the Stress

[46] function, defined as follows:

σ(X) =
∑

1<j≤N

wij(δij(X)− δij)2 (2.4)
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where 1 < j ≤ N , δij(X) is equal to the (i, j)-th element of the X matrix

and wij are weights that in the sequel will be put equal to 1.

The MDS problem could be considered as a non linear optimization prob-

lem, which minimizes the Stress function in the process of configuring L-

dimensional mapping from the set of objects into L-dimensions (RL).

2.3.1 MAjorizing a COmplicated Function (SMACOF)

MAjorizing a COmplicated Function (SMACOF ) [15] is an iterative ma-

jorization algorithm to solve MDS problem with Stress criterion. The it-

erative majorization procedure of the SMACOF could be thought of as

Expectation-Maximization (EM) [53] approach. Although SMACOF has a

tendency to find local minima due to his hill-climbing attribute, it is still a

powerful method since it is guaranteed to decrease the Stress (σ) criterion

monotonically. In the following part of this section we briefly explain how

SMACOF works.

Consider a N×N matrix ∆ of dissimilarities based on observed data. ∆ is

symmetric, non-negative, and has zero diagonal. The problem we solve is to

locate i = 1, . . . , n points in a low dimensional Euclidean space in such a way

that the distances between the points approximate the given dissimilarities

δij. Thus we want to find a N × L configuration X such that δij(X) ≈ δij,

where

δij(X) =

√√√√ l∑
s=1

(xis − xjs)2.

Considering the Equation 2.4, we follow [17], so the Stress criterion can

be decomposed as:

σ(X) =
n∑
i=1

m∑
j=1

wijδ
2
ij +

n∑
i=1

m∑
j=1

wijδ
2
ij(X)− 2

n∑
i=1

m∑
j=1

wijδijδij(X) =

= η2δ + η2(X)− 2ρ(X).
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From [15] and [17], we can write

σ(X) ≤ 1 + tr X>V X − 2tr X>B(Y )Y = τ(X, Y ).

In the case of wij = 1, V is equal to N(I− ee>

N
) where e = (1, . . . , 1)> is a

vector whose length is N . Y is a supporting point which is a N × P matrix

of configurations and B(Y ) has elements equal to − δij
δij(Y )

when i 6= j. 0 if

δij(Y ) = 0 and i 6= j. −
∑

i 6=j bij if i = j where bij is the (i, j)-th element of

the B matrix.

SMACOF iteratively minimizes the Stress function until a certain limit

is reached.

2.4 Results of the SMACOF

In this section we present the results obtained with SMACOF on the

similarity matrix S introduced in Chapter 1.

First of all we transform the similarity matrix to dissimilarity matrix

using.

∆ = 1− S.

Therefore, we apply the SMACOF to reduce the 95 × 95 ∆ matrix in a

95 × 1 configuration matrix X, whose rows represent each pseudo-domains

xi (i = 1, 2, 3, ..., 95) in 1−dimensional space.

In Table 2.1, the 95× 1 configuration matrix X containing the δij(X) is

reported. The pseudo-domains are ordered based on the new configuration.

SMACOF minimizes the Stress function in such a way to reduce the config-

uration matrix. The minimum value of the Stress function is 0. The amount

of Stress is used for judging the goodness of fit of the SMACOF solution:

a small Stress value indicates a good fitting solution, whereas a high value

indicates a bad fit. In this case, the value of the Stress function is 0.24976.
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The value is not really small and we can not consider this configuration a

good one.

PsD X PsD X PsD X PsD X PsD X

90 -1.139 32 -0.560 57 -0.156 11 0.276 4 0.726
47 -1.075 27 -0.540 53 -0.150 43 0.302 6 0.732
10 -1.047 17 -0.536 85 -0.104 5 0.351 13 0.745
3 -1.012 34 -0.480 28 -0.102 69 0.363 59 0.747
42 -0.999 63 -0.460 64 -0.096 23 0.370 93 0.768
20 -0.921 67 -0.442 37 -0.057 66 0.380 68 0.780
21 -0.891 72 -0.441 29 -0.050 14 0.382 31 0.785
35 -0.878 75 -0.427 81 -0.013 38 0.408 49 0.851
19 -0.860 88 -0.403 65 -0.007 89 0.432 76 0.865
7 -0.849 50 -0.391 36 0.034 73 0.465 46 0.937
24 -0.815 30 -0.381 41 0.069 84 0.503 15 1.011
51 -0.759 87 -0.370 60 0.091 52 0.520 61 1.047
39 -0.753 95 -0.345 92 0.093 56 0.521 54 1.057
8 -0.710 70 -0.283 48 0.098 77 0.601 12 1.153
2 -0.684 16 -0.278 71 0.140 62 0.605 25 1.201
79 -0.680 9 -0.270 78 0.155 22 0.628
45 -0.656 18 -0.244 82 0.156 86 0.631
1 -0.621 80 -0.221 94 0.196 26 0.657
40 -0.600 58 -0.176 55 0.202 83 0.669
91 -0.574 74 -0.161 44 0.259 33 0.700

Table 2.1: Domains ordered using the 1−dimensional representation. PsD stands
for pseudo-domains and X is the 95× 1 configuration matrix

Anyway, we study the quality of the 1-dimensional configuration by ex-

amining the response (Score) values for groups of enzymes where only one

pseudo-domain changes. Considering three constant positions we can sup-

pose that the response is affected only by the position where the pseudo-

domains are free to change.

In tables 2.2 and 2.3, we select two groups of pseudo-domains that result

to be near in the matrix X. We notice that the neighbouring pseudo-domains

have a response with high fluctuation. In accordance with biological consider-

ations, we were expecting to find a different behaviour of the response namely

that a group of neighbouring pseudo-domains would affect the response in
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a similar way. In other words, we were expecting a smooth behaviour of

the response, that it is not confirmed by our empirical analysis of the 1-

dimensional configuration where from a high peak, the response drops to a

minimum and, suddenly, increases up to a new peak, namely a high value

of the score. We remind that the range of the score, or response, is from 0

to 1000 (see Chapter 1). Hence, we decided to move from a 1-dimensional

configuration to a 2-dimensional one.

Pos1 Pos2 Pos3 Pos4 Score
8 64 75 83 568
8 37 75 83 490
8 29 75 83 686
8 81 75 83 578

Table 2.2: Position 2 is the free position. Group of 4 consequent pseudo-domains.

Pos1 Pos2 Pos3 Pos4 Score
8 73 75 83 561
8 84 75 83 714
8 52 75 83 541
8 56 75 83 611
8 77 75 83 541
8 62 75 83 614

Table 2.3: Position 2 is the free position. Group of 6 consequent pseudo-domains.

Then, we consider a 95×2 configuration matrix X, whose rows represent

each pseudo-domain xi (i = 1, 2, 3, ..., 95) in a 2−dimensional space. With a

95×2 configuration matrix X, the value of the Stress function reached by the

minimization procedure of SMACOF is 0.12521. In this case the Stress value

is smaller with respect to the previous one then this configuration better fits

the 95× 95 ∆ matrix. Furthermore, we compare the 1-dimensional configu-

ration and the 2-dimensional configuration using the Shepard diagram. The

Shepard diagram displays the relationship between the dissimilarities and

the distances of the point configuration. The ideal location for the points in

a Shepard diagram is a monotonically increasing line describing the so-called
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disparities, the optimally scaled dissimilarities. Less spread in this diagram

implies a good fit. In Fig. 2.3 we can see the Shepard diagram for the 1-

dimensional configuration and the 2-dimensional configuration. In the case

of the 1-dimensional configuration (Fig. 2.3 (a)), we notice that the point

are spread around the line. Instead, in Fig. 2.3 (b) the points are more close

to the monotonically increasing line. This result suggests us to consider the

2-dimensional configuration as the final configuration.
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Figure 2.3: 1-dimensional configuration vs 2-dimensional configuration.

The configuration assumed by the pseudo-domains is shown in figure 2.4.

It is possible to notice the presence of some clusters in the right part

of the plot. We suppose that a cluster is formed by pseudo-domains with

comparable secondary structure. Therefore, considering groups of enzymes

where only one pseudo-domain changes, we suppose that pseudo-domains

in a cluster do not have a different effect on response because they share

common biological features. In the plot it is possible to notice some clus-

ters as [20, 8, 88, 72, 95, 39], [7, 67, 27, 18], [35, 58], [52, 90, 42] e [28, 81]. The

remaining pseudo-domains do not form evident significant clusters. Some

exception are present, for example [33, 86]. Using this representation some
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Figure 2.4: 2−dimensional configuration.

pseudo-domains are considered totally different, as 51, 93, 41 e 66.

Pos1 Pos2 Pos3 Pos4 Score
8 20 75 83 551
8 8 75 83 602
8 88 75 83 552
8 95 75 83 545
8 39 75 83 549

Table 2.4: Position 2 is the free position. Cluster [20, 8, 88, 72, 95, 39] is consid-
ered.

As shown from tables 2.4, 2.5 and 2.6 with the 2−dimensional represen-

tation the variation of the response is minimum in each cluster. In table 2.4,

we consider the cluster composed by the pseudo-domains [20, 8, 88, 72, 95, 39]

and we notice that the response is not affected too much changing the pseudo-

domains in the sequence. In tables 2.5 and 2.6 not all the pseudo-domains

in the clusters are reported because the enzymes with those pseudo-domains

have been not evaluated. The trend of the response confirms the biological

considerations that have been done at the beginning of this analysis.
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Pos1 Pos2 Pos3 Pos4 Score
8 27 75 83 521
8 67 75 83 533

Table 2.5: Cluster [7, 67, 27, 18] is considered.

Pos1 Pos2 Pos3 Pos4 Score
8 28 75 83 568
8 81 75 83 578

Table 2.6: Cluster [28, 81] is considered.

From our analysis, we conclude that the 2-dimensional configuration is a

satisfactory representation of the 95 pseudo-domains. The Multidimensional

scaling, in particular the SMACOF approach, allows us to transform our

discrete problem into a continuous one. In fact, we can represent the 95

pseudo-domains in a 2-dimensional Euclidean space. Therefore, the sequence

(enzyme) composed by 4 positions can be seen as a value from R8 that consists

of 8 real numbers that specifies the coordinates of a point in 8-dimensional

space.

2.5 Regression Analysis

In this section we present the results obtained applying polynomial re-

gression to the new representation of our problem. With this representation

we consider as input variables of the model the 8 coordinates that compose

an enzyme and the response is the Score explained in Chapter 1.

We start our analysis with a linear model:

Y = β0 + β1x1 + β2x2 + . . .+ β8x8 + ε,

with −0.7149 ≤ xi ≤ 1.1776 (i = 1, 3, 5, 7) and −1.2468 ≤ xj ≤ 0.8341

(j = 2, 4, 6, 8).

We estimate the unknown parameters βi using the least squares approach

and we fit the model on a data set composed by 96 random chosen enzymes.

The resulting model is summarized in Table 2.7
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Estimate Std.Error Lower Upper
Intercept 372.385 6.644 359.584 385.186

x1 -55.775 13.302 -82.215 -29.335
x2 -5.071 15.388 -35.657 25.515
x3 35.969 13.464 9.207 62.731
x4 74.271 16.195 42.081 106.461
x5 8.584 14.053 -19.349 36.517
x6 -58.389 18.446 -95.054 -21.724
x7 66.096 11.746 42.729 89.463
x8 29.174 14.965 -0.572 58.920

Table 2.7: Resulting Linear Model. Lower and Uppers refer to the 95% confidence
intervals for each regression parameters.

In Table 2.7, the value for each βi, the standard errors and the 95%

confidence intervals for each estimations are shown. We notice that the

confidence interval for β8 is really wide in the sense that the upper limit is

about 100 times larger that the lower limit and we are not really confident

what the exact effect of growth on input variables x8 is.

Hence, we determine if there is a linear relationship between the response

variable y and a subset of the regression variables. In general, we use the

test for significance of regression. The appropriate hypotheses are H0 : β1 =

β2 = . . . = βk = 0 and H1 : βi 6= 0 for at least on i.

SV SS DF MS F0 p− value
Regression 339374.3 8 42421.79 11.193 9.352×10−11

Residual 329731.3 87 3790.015
Total 669105.6 95

Table 2.8: Test for Significance of Regression. SV stands for Source of Variation,
SS for Sum of Squares, DF for Degree of Freedom and MS for Mean Square.

In Table 2.8 is shown the analysis of variance and if we select an α = 0.05

then we reject H0 : β1 = β2 = . . . = βk = 0 in fact the p − value for F0 is

considerable smaller than α.

Furthermore, we investigate if some input variables can be dropped from

the model. We use the test on individual regression coefficients where the
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null hypothesis is H0 : βi = 0. If H0 : βi = 0 is not rejected, then this

indicates that xi can be deleted from the model. Using the t-test and an

α = 0.05 we notice that input variables x2 (p − value = 0.743) and x5

(p − value = 0.543) can be dropped from the model. The same resulting

model is reached also using a forward selection based on the minimization of

the Akaike Information Criterion (AIC ).

Hence, we obtained a new model with 6 input variables (x1, x3, x4, x6,

x7, x8) plus the intercept. The model is summarized in Table 2.9.

Estimate Std.Error Lower Upper
Intercept 372.561 6.581 59.485 385.637

x1 -55.374 13.033 -81.270 -29.478
x3 33.638 12.746 8.312 58.964
x4 71.500 15.538 40.626 102.374
x6 -57.193 18.177 -93.310 -21.076
x7 65.711 11.478 42.904 88.518
x8 27.571 14.618 -1.475 56.617

Table 2.9: Resulting Linear Model. Lower and Uppers refer to the 95% confidence
intervals for each regression parameters.

In this case F0 is equal to 15.1 and the p− value for F0 is 7.538× 10−12.

As in the previous case, we reject the null hypothesis. In this case, for all the

individual regression coefficients we reject the hypothesis H0 : βi = 0. Now,

a further investigation is to understand how well the model fits the data.

We use the coefficient of determination R2 that is a measure of the amount

of reduction in the variability of y obtained by using the regressor variables

x1, x3, x4, x6, x7, x8 in the model. We calculate the adjusted R2. In this

case, the linear model explains about 47.1 % of the variability observed in

the Score. However, we use our estimated model on 96 experimental points

(enzymes) to predict the value of 10 points not included in the initial data

set, available at the moment of the analysis. We use this new data set to

check the ability of the model to predict the response of the system. In Tab.

2.10, it is possible to see the predictions obtained using the last model.

In Figure 2.5 is shown the real Score of each enzyme against the predic-
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Pos1 Pos2 Pos3 Pos4 Score Prediction
Enzyme1 62 59 80 24 517 333.6
Enzyme2 8 22 11 88 417 408.1
Enzyme3 79 22 11 58 534 403.0
Enzyme4 2 59 80 57 470 403.6
Enzyme5 24 22 59 1 515 382.5
Enzyme6 14 74 11 13 256 341.0
Enzyme7 8 54 11 37 342 418.9
Enzyme8 24 40 13 90 508 321.2
Enzyme9 77 59 76 22 578 422.8
Enzyme10 18 29 27 13 510 472.5

Table 2.10: Comparison between real score and predicted one for the considered
polynomial model.

tions. Moreover the 95 % prediction interval is plotted.

This result does not seem to be satisfactory in our case. This is probably

due, from a biological point of view, because the pseudo-domains have a

strong interactions between them. These interactions are not considered

from our model. We decide to include in the model also all the interactions

between the input variables. The model has the following formal form:

Y = β0 +
∑

i=1,...,8

βixi +
∑
i<j

βijxixj + ε. (2.5)

The interaction between the variables are 24 because we do not consider

the interaction between coordinates (i.e. x1, x2) that identify 95 pseudo-

domains in the same position (i.e. first position) in the sequence (enzyme).

Anyway only few of them are significant in the model. We report the model

after a forward selection based on the minimization of the AIC and the fitted

model (from now we call this model M1) is summarized in Table 2.11.

We notice that the 95% confidence intervals for each interactions is wide

so we are not really confident on the effect of interactions in the response.

We analyse the variance (Table 2.14) and we do the test of significance of

regression. As in the previous case, we accept the alternative hypothesis,

H1 : βi 6= 0 for at least one i. The R2
adj is equal to 0.5563 so we do not have
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Figure 2.5: The real Score of each enzyme is shown against the predicted Score.
The black dots represent the real score. The model is the one with only the
significant principal effects.

a big incrementation with respect to the previous model.

Anyway, looking at the confidence intervals, we notice that some coeffi-

cients are not significant.

We decide to restart the analysis, starting from the model in the form

2.5, and drop all the non significant coefficients (from now we call this model

M2). The resulting model is shown in Table 2.13. In this case, the R2
adj is

equal to 0.5260.

As in the previous analysis, we use both estimated models on 96 exper-

imental points (enzymes) to predict the value of the same 10 points used

before. Also in this case, the aim of this analysis is to check the ability of the

models to predict the response of the system. The results seems to be not

satisfactory. In Tab. 2.15, it is possible to see that the predictions obtained
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Estimate Std.Error Lower Upper
Intercept 376.679 6.525 363.694 389.664

x1 -45.134 12.765 -70.537 -19.731
x2 -15.130 14.795 -44.573 14.313
x3 37.926 13.022 12.011 63.841
x4 73.751 15.260 43.383 104.119
x5 15.231 13.169 -10.976 41.438
x6 -77.216 18.740 -114.510 -39.922
x7 57.213 11.370 34.586 79.840
x8 31.923 14.023 4.016 59.830
x1:x7 -67.165 23.939 -114.805 -19.525
x2:x3 -57.002 30.007 -116.718 2.714
x2:x4 79.009 47.227 -14.976 172.994
x3:x6 -58.128 40.556 -138.837 22.581
x4:x6 -128.176 44.633 -216.998 -39.356
x4:x7 56.458 26.353 4.014 108.902
x5:x8 29.174 28.857 -109.516 5.338

Table 2.11: M1: resulting Linear Model with significant interaction between
input variables. Lower and Uppers refer to the 95% confidence intervals for each
regression parameters.

using both models are not good.

From Figure 2.6, we can notice that the 50% of the predicted score is

inside the bounds, anyway some of the points are really near to the upper or

lower bound. The other 50% are over the upper bound, we can suppose that

the models overestimate the influence of the input variables on the response.

With bounds closer to the predicted values probably the prediction could be

worse with the exception of two enzymes.

The limited amount of data limits the reliability of the models. Another

indicator is R2
adj, its small value suggests us that the regression models are

not good. We have done a preliminary analysis also with a second order

polynomial model but all the quadratic terms were not significant so we

have decided to stop this analysis. The few experimental points and the non

linearity of the phenomena under study reduce the reliability of the models.
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Figure 2.6: The real Score of each enzyme is shown against the predicted
Score obtained by (a) M1 and (b) M2. The black dots represent the real
score.
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SV SS DF MS F0 p− value
Regression 419091.1 15 27939.41 8.94 1.028×10−11

Residual 250014.5 80 3125.181
Total 669105.6 95

Table 2.12: M1: test for Significance of Regression. SV stands for Source of
Variation, SS for Sum of Squares, DF for Degree of Freedom and MS for Mean
Square.

Estimate Std.Error Lower Upper
Intercept 374.643 6.269 362.181 387.105

x1 -46.232 12.672 -71.423 -21.041
x3 27.346 12.452 2.592 52.100
x4 65.401 15.117 35.350 95.453
x6 -58.387 17.817 -93.806 -22.968
x7 60.632 11.290 38.188 83.076
x8 32.843 14.013 4.986 60.700
x1:x7 -55.077 24.296 -103.376 -6.778
x4:x6 -117.593 44.573 -206.201 -28.985
x4:x7 47.061 26.899 -6.412 100.534

Table 2.13: M2: resulting Linear Model. Lower and Uppers refer to the 95%
confidence intervals for each regression parameters.

2.6 Some Conclusions

In this chapter we describe the possibility to face the Enzyme Engineering

Design using classical statistical approaches.

For this purpose we develop a 3-stage method based on some biological

consideration and two well-known statistical methods. We show how it is

possible to transform a discrete problem to a continuos one using Multidi-

mensional Scaling. In fact we demonstrate that it is possible to represent

each pseudo-domain as a value from R2.

This result allows us to tackle the problem using a linear regression model.

We fit different models to a dataset of 96 randomly chosen enzymes and

we notice that this approach is not satisfactory in terms of prediction and

reliability. We conclude that a more thorough investigation of statistical
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SV SS DF MS F0 p− value
Regression 381994.0 9 42443.77 12.71 1.275×10−12

Residual 287111.7 86 3338.5087
Total 669105.6 95

Table 2.14: M2: test for Significance of Regression. SV stands for Source of
Variation, SS for Sum of Squares, DF for Degree of Freedom and MS for Mean
Square.

Pos1 Pos2 Pos3 Pos4 Score M1 : Pred M2 : Pred
Enzyme1 62 59 80 24 517 304.6 327.2
Enzyme2 8 22 11 88 417 321.2 335.4
Enzyme3 79 22 11 58 534 348.0 350.2
Enzyme4 2 59 80 57 470 350.7 376.0
Enzyme5 24 22 59 1 515 360.2 339.8
Enzyme6 14 74 11 13 256 361.6 354.9
Enzyme7 8 54 11 37 342 374.7 396.4
Enzyme8 24 40 13 90 508 327.4 326.6
Enzyme9 77 59 76 22 578 424.4 418.8
Enzyme10 18 29 27 13 510 535.3 506.0

Table 2.15: Comparison between real score and predicted one for M1 (M1:Pred)
and M2 (M2:Pred).

models for discrete problems is necessary.

For this reason, the next part of this thesis is devoted to a study of

more accurate models for high dimensional spaces and the concepts of Com-

binatorial Optimization, a well-known technique in the presence of discrete

variables.



Chapter 3

Statistical Models for High

Dimensional Problems

3.1 The “large p, small n“ Problem

In the last decade, modern scientific technology is providing a class of

complex problems that typically involve data that are high dimensional.

These complex experiments involve a vast number of variables, a high di-

mensional search space and a large number of economical constraints that

limit the ability of classical statistical techniques to tackle the problems.

For most of the time, the primary motivation of statistical studies has

been to find solutions when a large number of experimental units were mea-

sured and a small number of features had to be considered. Nowadays the

situation is changing. More and more frequently the variables involved in a

problem reach high numbers. Moreover, limited budgets reduce the possibil-

ities to experiment several combinations of modalities for the variables. It is

very common that a vast number of variables and a large experimental space

are involved, and only few experimental points can be tested and evaluated.

Modern applications of statistical theory and methods are devoted to

this new problem. They can involve extremely large datasets, often with an

enormous number of measurements on each of a comparatively small number

of experimental units. New methodology has emerged in response and papers
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that illustrate a number of these recent developments [47] [38] [54] are present

in the litaterature.

If, informally, we let p denote the dimension of what is “unknown“ and let

n denote the cardinality of what is known, the key scenarios to be investigated

can be described as “large p, small n“ or in some case as “large p, large n“;

the theory for the former scenario would assume that p goes to infinity faster

than n and for the latter would assume that p and n go to infinity at the

same rate [39].

In practice, n will generally correspond to the number of experimental

units on which data are available; for p, however, there are at least two

interpretations, with a strong relation between them. The first interpretation

is the measure of complexity of the model to be fitted to the data. However,

that is often determined by the dimension of the data as given by the number

of variables recorded for each experimental unit.

In our case we shall assume that we are in the case that n, number of

experimental units, is small and p, number of parameters involved in the

experiment, is high. As we can understand, the number of all the possible

combinations of the p parameters and their levels can be enormous, creating

an incredibly complex search space.

In this contest we need statistical models and techniques able to get as

much information as possible from the few data points. In the literature there

are models that assume that the number of really influential parameters k, is

much smaller than the nominal number p involved in the experiment, these

are for instance the additive models, the “Least Absolute Shrinkage and

Selection Operator“ (LASSO) models and others.

Bayesian Network and Näıve Bayes Network are two other efficient tech-

niques in the case of high dimensionality.

In this chapter we are going to present an overview of some the most

important techniques for “large p, small n“ problems. In the sequel of this

thesis we will apply only one of them, namely a modified version of the Näıve

Bayes Classifier.
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3.2 A First Step: Ridge Regression

Consider a set of data in the form of measurements on n individuals,

x̄i, yi; i = 1, ..., n, where x̄i is a set of predictors and yi is a response. A

convenient notation, using vector and matrix, is possible to represent the

model for the complete set of n data pairs,

y = Xβ + ε , (3.1)

where the n × 1 vector contains the response, the vector β contains the p

parameters except for σ2, the n× 1 vector ε contains the error and the n× p
design matrix X completes the model.

The standard way of estimating the unknown slope and intercept in β is

to use least-squares approach and obtain

β̂ = argmin
β

∑
i

(yi − β1 − β2xi)2,

which means that β̂ is the minimizer of the sum of squares function on the

right hand side. In the general vector-matrix notation, this case can be

written in terms of Euclidean distance | · |, as

β̂ = argmin
β
|y −Xβ|2.

β̂ satisfies

X>Xβ̂ = X>y,

and

β̂ = (X>X)−1X>y,

the explicit formula in the second equation being available provided that the

matrix X>X can be inverted.

There is another important interpretation of β̂. Our assumptions mean

that y is drawn form Nn(Xβ, σ2I), in which Nn denotes an n-variate multi-
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variate Gaussian distribution, with Xβ as the vector of means and σ2I as

the covariance matrix, and where I is the n × n indentity matrix, then the

density function for y is then

p(y|X, β) = {
√

2πσ2}n/2exp{−|y −Xβ|
2

2σ2
}.

The data provide y and X. When viewed as a function of the parameters,

this is now called the likelihood function, and,

β̂ = argmax
β

p(y|X, β).

Thus, β̂ is the so-called maximum likelihood estimator of β.

The usual estimation procedure for the unknown β is unbiased and has

minimum variance in the class of unbiased linear estimators. This estimation

procedure is a good one if X>X is nearly a unit matrix. If X>X is not nearly

to a unit matrix, the least square estimations are sensitive to a number of

limitations. These limitations are due to the non linearity of the phenomena

under study and they can reduce the reliability of the true model. Then the

least squares estimations often do not make sense when put into the contest

of the physics, chemistry, and engineering of the process which is generating

the data.

A possible solution of the previous problems is to consider a transforma-

tion of the X>X matrix.

A. E. Hoerl first suggested in 1962 [36] that to control the inflation and

general instability associated with the least squares estimates, one can use

β̂∗ = (X>X + kI)−1X>Y ; k ≥ 0 (3.2)

= WX>Y . (3.3)

The positive scalar k is called ridge parameter or regularization constant

and the family of estimates given by k ≥ 0 has many mathematical similari-

ties with the portrayal of quadratic response functions [36]. For this reason,

estimation and analysis around (3.2) has been labeled ridge regression [37].
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The relationship of a ridge estimate to an ordinary estimate is given by

the alternative form

β̂∗ = [I + k(X>X)−1]−1β̂

= Zβ̂. (3.4)

Some properties of β̂∗, W , and Z are

(i) Let ξi(W ) and ξi(Z) be the eigenvalues of W and Z, respectively. Then

ξi(W ) = 1/(λi + k),

ξi(Z) = λi/(λi + k), (3.5)

where λi are the eigenvalues of X>X. These results follow directly

the definition of W and Z in (3.3) and (3.4) and the solution of the

characteristic equations |W − ξI| = 0 and |Z − ξI| = 0.

(ii)

Z = I − k(X>X + kI)−1 = I − kW. (3.6)

The relationship is verified by writing Z in the alternative form Z =

(X>X + kI)−1X>X = WX>X and multiplying both sides of (3.6) on

the left by W−1.

(iii) β̂∗ for k 6= 0 is shorter than β̂, i.e.,

(β̂∗)>(β̂∗) < β̂>β̂, (3.7)

Let us show this result. By definition β̂∗ = Zβ̂. From its definition

and the assumptions on X>X, Z is clearly symmetric positive definite.

Then the following relation holds:
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(β̂∗)>(β̂∗) < ξ2max(Z)β̂>β̂,

But ξmax(Z) = λ1/(λ1 + k) where λ1 is the largest eigenvalue of X>X

and (3.7) is established. From (3.5) and (3.6) it is seen that Z(0) = I

and that Z approaches 0 as k →∞.

For an estimate β̂∗ the residual sum of squares is

φ∗(k) = (Y −Xβ̂∗)>(Y −Xβ̂∗),

which can be written in the form

φ∗(k) = Y >Y − (β̂∗)>X>Y − k(β̂∗)>(β̂∗).

The expression shows that φ∗(k) is the total sum of squares less the regression

sum of squares β̂∗ with a modification depending upon the squared length of

β̂∗.

We can say that an estimation based on the matrix [X>X + kI], k ≥ 0

rather than on X>X, is a procedure that can be used to help circumvent

many of the difficulties associated with usual least squares estimates. In

particular, the procedure can be used in the case of non linearity of the

particular set of data being considered, and it can be used to obtain a point

estimate with a smaller mean square error.

3.3 Least Absolute Shrinkage and Selection

Operator (LASSO)

Ridge Regression is a continuous process that shrinks coefficients and

hence it is more stable: however, it does not set any coefficient to 0 therefore

it does not give an easily interpretable model.

Tibshirani in the 1996 [70] proposed a new method for estimation in

linear models. The method minimizes the residual sum of squares subject to

the sum of the absolute values of the coefficients being less than a constant.
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Because of the nature of this constraint it tends to produce some coefficients

that are exactly 0 and hence gives interpretable models.

Starting from the set up introduced in Section 3.2, we assume that the

xij are standardized so that
∑

i xij = 0,
∑

i x
2
ij = 1.

Letting β̂ = (β̂1, ..., β̂p)
>, the lasso estimate (α̂, β̂) is defined by

(α̂, β̂) = argmin[
N∑
i=1

(yi − α−
∑
j

βjxij)
2], (3.8)

subject to
∑

j |βj| ≤ t.

Here t ≥ 0 is a tuning parameter. Now, for all t, the solution for α is α̂ = ȳ.

The parameter t ≥ 0 controls the amount of shrinkage that is applied to

the estimates. Let β̂0 be the full least squares estimates and let t0 =
∑
|β̂0
i |.

Values of t < t0 will cause shrinkage of the solutions towards 0, and some

coefficients may be exactly equal to 0.

The motivation for the LASSO came from a proposal of Breiman in 1993

[12].

Breiman’s non-negative garotte minimizes

N∑
i=1

(yi − α−
∑
j

cjβ̂
ols
j xij)

2, (3.9)

subject to cj ≥ 0,
∑

j cj ≤ t.

The garotte starts with the ordinary least square (OLS) estimates and shrinks

them by non-negative factors whose sum is constrained. A drawback of

the garotte is that its solution depends on both the sign and magnitude of

the OLS estimates. In overfit or highly correlated settings, where the OLS

estimates behave poorly, the garotte may suffer as a result. In contrast the

LASSO avoids the explicit use of the OLS estimates.

Another important point is that the lasso estimate is a non-linear and

non-differentiable function of the response values even for a fixed value of

t, it is difficult to obtain an accurate estimate of its standard error. One
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approach is via the bootstrap: either t can be fixed or we may optimize over

t for each bootstrap sample. Fixing t is analogous to selecting a best subset,

and then using the least squares standard error for that subset.

The LASSO approach is useful when the number of p is high with respect

to the available data, and overall in the situation when there is sparsity on

the n× p design matrix.

3.4 Elastic Net

The LASSO has shown success in many situations but it has some lim-

itations. In the p > n case, the LASSO selects at most n variables before

it saturates, it means that p − n variables are not consider in the models.

Then, important information is missed. This seems to be a limiting feature

for a variable selection method. Moreover, if there is a group of variables

among which the pairwise correlations are very high, then the LASSO tends

to select only one variable from the group and does not care which one is

selected. Last limitation is that for usual n > p situations, if there are high

correlations between predictors, it has been empirically observed that the

prediction performance of the LASSO is dominated by ridge regression [70].

Zou and Hastie in the 2005 proposed a new regularization technique called

elastic net [72]. The elastic net simultaneously does automatic variable selec-

tion and continuous shrinkage, and it can select groups of correlated variables.

First we have to introduce the concept of näıve elastic net. Suppose that

the data set has n observations with p predictors. Let y = (y1, ..., yn)> be the

response and X = (x1|...|xp) be the model matrix, where xj = (x1j, ..., xnj)
>,

j = 1, ..., p, are the predictors. After a location and scale transformation, we

can assume that the response is centred and the predictors are standardized,

n∑
i=1

yi = 0,
n∑
i=1

xij = 0, and

n∑
i=1

x2ij = 1, for j = 1, 2, ..., p.

For any fixed non negative λ1 and λ2, Zou and Hastie define the näıve
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elastic net criterion

L(λ1, λ2, β) = |y −Xβ|2 + λ2|β|2 + λ1|β|1, (3.10)

where

|β|2 =

p∑
j=1

β2
j |β|1 =

p∑
j=1

|βj|.

The näıve elastic net estimator β̂ is the minimizer of equation (3.10):

β̂ = argmin
β

[L(λ1, λ2, β)].

This procedure can be viewed as a penalized least squares method. Let

α = λ2/(λ1 + λ2); then solving β̂ on equation (3.10) is equal to:

β̂ = argmin
β
|y −Xβ|2, subject to (1− α)|β|1 + α|β|2 ≤ t,

for some t. (1 − α)|β|1 + α|β|2 is called elastic net penalty, which is convex

combination of the LASSO and ridge penalty. When α = 1, the näıve elastic

net becomes a ridge regression. For all α ∈ [0, 1), the elastic net penalty

function is singular (without first derivative) at 0 and it is strictly convex

for all α > 0, thus having the characteristics of both the LASSO and ridge

regression.

With the parameters (λ1, λ2) the näıve elastic net solution is

β̂
(nen)
1 =

(|β̂(OLS)
i | − λ1/2)+

1 + λ2
sgn[β̂

(OLS)
i ], (3.11)

where β̂(OLD) = X>y and z = (|β̂(OLS)
i | − λ1/2)+ denotes the positive part

of the equation, which is z if z > 0 otherwise 0.

Näıve elastic net does not perform satisfactory unless it is very close to

either ridge regression or the LASSO. An improvement is possible doing a
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scaling transformation of the coefficient in the following way. Given data

(y,X), penalty parameter (λ1, λ2) and augmented data (y∗, X∗), the näıve

elastic net solves a lasso type problem

β̂∗ = argmin
β∗
|y∗ −X∗β∗|2 +

λ1√
(1− λ2)

|β∗|1.

The elastic net estimates β̂ is now defined by

β̂elastic =
√

(1− λ2)β∗,

thus

β̂elastic = (1 + λ2)β̂
(nen).

Such a transformation preserves the variable selection property of the

näıve elastic net and is the simplest way to undo shrinkage.

In conclusion, the elastic net is a generalization of the LASSO, which has

been shown to be a valuable tool for model fitting and feature extraction. It

produces a sparse model with good prediction accuracy, while encouraging a

grouping effect.

3.5 Sparse Additive Model (SpAM)

Starting from nonparametric regression it is possible to relax the assump-

tion made by a linear model and to create a model more suitable in high

dimensions. Nonparametric regression is defined as

yi = fj(xi) + εi,

where f is a general smooth function.

A more accurate solution is proposed by Hastie and Tibshirani [35] in

1999 that introduces a class of additive models of the form

yi =

p∑
j=1

fj(xij) + εi, . (3.12)
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This additive combination of univariate functions, one for each covariate Xj,

is less general, but can be more interpretable and easier to fit; in particular,

and additive model can be estimated by using a co-ordinate descent Gauss-

Seidel procedure, called backfitting [35]. An extension of the additive models

is the functional ANOVA model

yi =
∑

1≤j≤p

fj(xij) +
∑
j<k

fjk(xij, xik) +
∑
j<k<l

fjkl(xij, xik, xkl) + ...+ εi, (3.13)

which allows interactions among the variables. Additive models only have

good performance when the number of variables p is not large relative to the

sample size. So their usefulness is limited in the high dimensional setting.

A possible solution is the use of Sparse Additive Models (SpAM) [63]

that combine idea from sparse linear modeling and additive nonparametric

regression in such a way as to extend the advantages of the first kind of

models to the additive, nonparametric setting. SpAM is a method for fitting

the models that is effective when the number of covariates is larger that the

sample size.

The underlying model is the same as in (3.12), but it is impose a sparsity

constraint on the index set {j : fj 6= 0} of functions fj that are not indenticaly

zero. This helps to simultaneously encourage smoothness of each component

and sparsity across components. As it is possible to understand, the success

of this method depends on the initial estimates of component functions fj.

The SpAM estimation procedure allows the use of arbitrary nonparamet-

ric smoothing techniques, and in the case where the underlying component

functions are linear, it reduces to the LASSO.

The procedure for fitting the Sparse Additive Model is based on a coor-
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dinate descent algorithm derived as follow.

Algorithm 3.5.1: SpAM procedure(data(xi, yi), λ)

procedure SpAM Backfitting Algorithm((xi, yi), λ)

Initialize f̂j = 0, for j = 1, ..., p

repeat

compute : Rj = y −
∑

k 6=j f̂k(xk)

estimate : Pj = E(Rj|xj)
comment: by smoothing Pj = SjRj

estimate : ŝj = (1/n)
∑n

i=1 P
2
j (i)

threshold : f̂j = [1− λ/ŝj]+Pj
comment: soft thresholding

centre : f̂j ← f̂j −mean(f̂j)

until convergence

comment: for each j = 1, ..., p

return (f̂j, m̂(xi) =
∑

j f̂j(xij))

To underline that Sj is a linear smoother, such as local linear or kernel

smoother. Another important point of the SpAM Backfitting Algorithm is

the estimation of ŝj that is equal to 1√
n
|P̂j| =

√
E(P 2

j ).

Moreover the first two steps in the iterative algorithm are the usual back-

fitting procedure, the remaining steps carry out functional soft thresholding.

This algorithm can be seen as a functional version of the coordinate descent

algorithm for solving the LASSO.

The SpAM approach can be extended to nonparametric logistic regression

for classification.
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3.6 Another approach: Bayesian Theory

Considering a parameterized family of probability density function for

continuos distribution, or a probability mass functions in the case of discrete

distributions, we can define the f(x|θ) = f(x1, ..., xn|θ) as the joint distribu-

tion of the data, where x = (x1, ..., xn) stands for a vector of observations

(x1, ..., xn) and θ the parameter of the function. When we treat the unknown

parameter θ as a random variable with distribution π(θ) over the parameter

space we can use Bayesian Inference. The π(θ) is called prior distribution for

θ and represents our degree of belief about θ before we see any data. Having

seen the data, it is possible to update our degree of belief using Bayes cal-

culus so that we changed into the posterior distribution for θ; all inference

procedures are based on this posterior distribution.

Beginning with our prior distribution on θ which we summarize by a

(discrete or continuos) probability distribution: π(θ), we then observe some

relevant data (x1, ..., xn) whose sampling distribution depends on θ. The

sampling distribution is the distribution of the data given θ, f(x|θ). Then,

by Bayes calculus we obtain the posterior distribution for θ as:

π(θ|x) =
f(x|θ)π(θ)

f(x)

where f(x) =
∫
f(x|θ)π(θ)dθ is the marginal distribution of x.

Starting from these basic concepts, the rest of the chapter is dedicated to

two important methodologies in Bayes Theory: Bayesian Network and Näıve

Bayes Classifier.

3.6.1 Bayesian Network

Bayesian Network (BN ) is used to represent knowledge about an uncer-

tain domain and it belongs to the family of probabilistic graphical models.

BNs corresponds to a specific graphical model structure known as a di-

rected acyclic graph. These graphs enable an effective representation and

computation of the joint probability distribution over random variables [61].

The structure of a direct acyclic graph is defined by two sets: the set of
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X1 X2 X3 

X4 X5 

X6 

Figure 3.1: This graph represents a directed acyclic graph or Bayesian Network.
Each node is a random variable and each arc has his own direction. There are not
cyclic on the graph. The node X6 can be called ”son” of node X4 and X4 can be
called ”parent” of node X6.

nodes (vertices) and the set of directed edges. The nodes represent random

variables and the edges represent direct dependence among the variables.

In particular, an edge from node Xi to node Xj represents a probabilistic

dependence between the corresponding variables, in other words the facts

that Xi happens changes the probability of Xj. Thus, the arrow indicates

that a value taken by variable Xi influences the value taken by variable Xj.

Node Xi is then referred to as a parent of Xj and, similarly, Xj is referred

to as a child of Xi.

Another important definition is that the node Xj may be said to be a

descendant of the node Xi if there is a direct path between Xi and Xj,

otherwise Xj is said to be a nondescendant of Xi. We can say that a sequence

of nodes [X0, ..., Xn] is a path if and only if, ∀ i, 1 ≤ i ≤ n, there is a direct

arc between Xi−1 and Xi.

The network is defined by a pair B = 〈G,Θ〉 where G is the directed

acyclic graph whose nodes X1, X2, ..., Xn represents random variables, and

whose edges represent the direct dependencies between these variables. The

graph G encodes independence assumptions, by which each variable Xi is

independent of its nondescendents given its parents in G. The second com-
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ponent Θ denotes the set of parameters of the network. This set contains

the parameter θxi|πi = PB(xi|πi) for each realization xi of Xi conditioned on

πi, the set of parents of Xi in G. According by B defines a unique joint

probability distribution over the set of random variables: namely:

PB(X1, X2, ..., Xn) =
n∏
i=1

PB(Xi|πi) =
n∏
i=1

θXi|πi

Summarizing, a Bayesian Network is an acyclic graph that represents a

joint probability distribution over a set of random variables.

Given a Bayesian Network that specifies the joint probability distribu-

tion in a factored form, one can evaluate all possible inference queries by

marginalization [61].

Two types of inference support are often considered: predictive support

for node Xi, based on evidence nodes connected to Xi through its parent

nodes (also called top-down reasoning). With top-down reasoning we intend

a reasoning from symptoms to cause. This reasoning occurs in the oppo-

site direction to the network arcs. Instead, diagnostic support for node Xi

through its children nodes (also called bottom-up reasoning). Bottom-up rea-

soning is reffered to a reasoning from new information about causes to new

belief about effects, following the directions of the network arcs [44].

Another inference support is the so called approximate inference methods.

These methods are often used in the literature, such as Monte Carlo sam-

pling that gives gradually improving estimates as sampling proceeds [34]. A

variety of standard Markov Chain Monte Carlo methods, including the Gibbs

sampling and the Metropolis-Hastings algorithm, are used for approximate

inference [60].

Baysian Networks are used in different applications such as machine learn-

ing, text mining, bioinformatics and cellular networks. Moreover, Baysian

networks can be used, even in the case of missing data, to learn the causal

relationships and gain an understanding of the various problem domains and

to predict future events.
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3.6.2 Näıve Bayes Classifier

The Näıve Bayes Approach [56] is a classification procedure based on

Bayes rule, that assumes the attributes X1, ..., Xn are all conditionally in-

dependent of one another, given Y . The value of this assumption is that

it dramatically simplifies the representation of P (X|Y ), and the problem of

estimating it from the data in order to estimate our model.

X1 X2 X3 

Y 

X4 X5 

Figure 3.2: This graph represents a graph based on the Näıve Bayes approach.
Each node is conditionally independent of one another, given Y .

Consider the case where X = 〈X1, ..., Xn〉, we have

P (X1, X2, ..., Xn|Y ) =
n∏
i=1

P (Xi|Y )

This equation follows directly from the definition of conditional indepen-

dence. Starting from this point, it is possible to understand how the Näıve

Bayes Approach works. Assuming that Y is any discrete valued variables,

and the attributes X1, ..., Xn are any discrete or real valued variables, the

goal of Näıve Bayes method is to train a classifier that will output the prob-

ability distribution over possible values of Y, for each new instance X that

we want to classify.

The probability that Y will take on its k th possible value, according to

the Bayes Rule, is

P (Y = yk|X1, ...Xn) =
P (Y = yk)P (X1, ..., Xn|Y = yk)∑
j P (Y = yj)P (X1, ..., Xn|Y = yj)

where the sum is taken over all possible value yj of Y . Assuming that Xi
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are conditionally independent given Y , we can write

P (Y = yk|X1, ...Xn) =
P (Y = yk)

∏
i P (X1, ..., Xn|Y = yk)∑

j P (Y = yj)
∏

i P (Xi|Y = yj)
(3.14)

Equation (3.14) is the base for the Näıve Bayes Classifier. Given a new

instance Xnew = 〈X1, ..., Xn〉, it is possible to calculate the probability that

Y will take on any given value. If we want to know the most probable value

of Y , we obtain the Näıve Bayes Rule:

Y ← argmax
yk

P (Y = yk)
∏

i P (X1, ..., Xn|Y = yk)∑
j P (Y = yj)

∏
i P (Xi|Y = yj)

In the case of discrete values, in the Näıve Bayes Approach it is necessary

to estimate two sets of parameters. So, when the n input attributes Xi each

take on J possible discrete values, and Y is a discrete variable taking on K

possible values, the first set of parameters to be estimate are

θijk ≡ P (Xi = xij|Y = yk)

for each Xi, each of its possible values xij and each possible value yk of Y.

Note there will be nJK such parameters, and also that only n(J − 1)K of

these are independent, given that they must satisfy
∑

i θijk = 1 for each pair

(i, k).

In addition, it is necessary to estimate parameters that define the prior

probability over Y

πk ≡ P (Y = yk).

Here, there are K parameters, (K − 1) of which are independent.

To estimate these parameters, it is possible to use either maximum likeli-

hood estimates or using maximum a posteriori probability (MAP) estimates,

augmenting the observed data with a prior distributions over the values of

the parameters.

This approach reduces the complexity for learning Bayesian classifier by

making a conditional independence assumption that dramatically reduces the
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number of parameters to be estimated when modeling P (X|Y ).

It is often used in the biological field. Kohonen at al. [43] proposed

a Näıve Bayes Classifier for protein function prediction. In this case, the

Näıve Bayes approach is used as a tool for annotating proteins on the basis

of amino-acids motifs, cellular localization and protein-protein interactions.

The authors applied the Näıve Bayes model in order to provide probabilis-

tic predictions, and to enable a computationally efficient approach to data

integration.



Chapter 4

Combinatorial Optimization

and Metaheuristics

4.1 Combinatorial Optimization

When we are speaking about an optimization problem, theoretical as well

as practical, often we refer to the need of finding the best configuration of

a set of variables to achieve a specific goal. Optimization problems can be

divided mainly into two different categories: those where we consider real-

valued variables and those where we consider discrete variables. Optimization

problems can concern also a combination between the two types but those

are less frequent.

Considering only discrete variables, we find a class of problems called

Combinatorial Optimization (CO) problems. CO problems refer to problems

where the solution is an object from a finite, or possibly countable infinite,

set. Typically, this object is an integer number, a subset, a permutation of

discrete elements or a graph structure [8].

Definition 4.1 A Combinatorial Optimization problem P = (S, f) can be

defined by

- a set of variables X = {x1, ..., xn};

- variable domains D1, ..., Dn;
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- constraints among variables;

- an objective function f to be minimized (or maximized), where f : D1 ×
...×Dn → R+;

The set of all possible feasible assignments is

S = {s = {(x1, υ1), ..., (xn, υn)}|υi ∈ Di, s satisfies all the constraints}.

where υi indicates the value of the variable xi, ∀i. S can be called also search

space and each element in the search space is considered as a candidate

solution. A solution s∗ ∈ S is one that minimizes the objective function, it

means that f(s∗) ≤ f(s)∀s ∈ S. s∗ is a global optimal solution of the problem

P = (S, f) and the set S∗ ⊆ S is the set of globally optimal solutions.

Traveling Salesman Problem (TSP) [49], Quadratic Assignment Problem

(QAP) [31], Timetabling and Scheduling Problems are typical Combinatorial

Optimization problem. CO problems arise also from biology and biochem-

istry. All of them are really important from a practical point of view therefore

many algorithms have been developed. These algorithms can be classified in:

- complete algorithms;

- approximate algorithms;

The first category identifies algorithms that are guaranteed to find for every

finite size instance of a problem an optimal solution in bounded time. The

second one sacrifices the guarantee of finding optimal solutions for the sake

of getting good solutions. The main advantage of the approximate methods

is to significantly reduce the amount of time for finding a solution.

Another classification within the approximate algorithms is to consider

them separated in: constructive methods and local search methods. The

constructive approach creates solutions from scratch by adding components,

to an initially empty partial solution set, until a solution is complete. They

are fast but they often return solutions of inferior quality when compared to

local search algorithms. The latter start from some initial solution and itera-

tively tries to replace the current solution by a better one in an appropriately
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defined neighborhood of the current solution [8]. We can say that a neigh-

borhood of a point is a set containing the point where you can move that

point some amount without leaving the set. More formally, a neighborhood

is defined as follows:

Definition 4.2 A neighborhood structure is a function N : S → 2S that

assigns to every s ∈ S a set of neighbors N(s) ⊆ S. N(s) is called a neigh-

borhood of s.

We intend a neighbor as a modification of the starting point to another

one that, for some specific distances, is considered near.

Now it is possible to define what a locally minimal solution is.

Definition 4.3 A locally minimal solution with respect to a neighborhood

structure N is a solution ŝ such that ∀s ∈ N(ŝ) : f(ŝ) ≤ f(s). ŝ is called a

strict locally minimal solution if f(ŝ) < f(s) ∀s ∈ N(ŝ) and s 6= ŝ.

One of the first approaches to solving combinatorial optimization prob-

lems was the Branch and Bound (BB) algorithm [48] that is an algorithm

requiring a systematic enumeration of all candidate solutions, where a large

number of candidate solutions are discarded by using upper and lower esti-

mated bounds of the quantity being optimized. BB algorithm obtains high

quality results but it requires effort that grows exponentially with problem

size. In the last 27 years a new class of more efficient algorithms has emerged,

the so called metaheuristics.

4.2 Metaheuristic Algorithms

Metaheuristic methods are a new set of algorithms based on the combina-

tion of heuristic approaches in high level frameworks aimed at efficiently and

effectively exploring the search space. Metaheuristic algorithms are widely

used in different fields with good results.

This set of algorithms includes, but is not restricted to, Ant Colony Opti-

mization (ACO) [26], Evolutionary Computation (EC ) [2] including Genetic
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algorithms (GA) [33], Iterated Local Search (ILS ) [50], Simulated Annealing

(SA) [41], and Tabu Search (TS ) [32].

There are different definitions for the term metaheuristic but all the defini-

tions share common features that can be summarized as follows. Metaheuris-

tic algorithms are strategies that guide the search process; the final goal of

each approach is to efficiently explore the search space in order to find optimal

solutions or, at least, near-optimal solutions. Metaheuristics are composed

with different techniques that can range from simple local search to complex

learning processes. This kind of algorithms rely on probabilistic decisions

made during the search, moreover these approaches include mechanisms to

avoid getting stuck in confined areas of the search space. Metaheuristics are

a set of concepts that can be used to define heuristic methods that can be

applied to a wide set of different problems, domain-specific knowledge can

be included in the process and can help to reach the optimum solution.

In short, metaheuristics are high level strategies for exploring search

spaces by using different methods. These methods are a balance between

diversification and intensification.

Diversification means the exploration of the search space, instead the term

intensification refers to the exploitation of the accumulated search experience.

The use of diversification and intensification is really important in the search

process because it allows one to quickly identify regions in the search space

with high quality solutions and, also, not to waste too much time in some

regions of the search space which either have already been explored or do not

provide high quality solutions.

Different metaheuristics apply search strategies that depend on the phi-

losophy of the metaheuristic itself.

4.3 Different Metaheuristic Strategies

It is possible to classify metaheuristic algorithms depending on the char-

acteristics selected to differentiate among them. The most important ways

of classifying metaheuristic is [8]:
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- Nature-inspired or Non-nature Inspired ;

- Population-based or Single-point Search;

- Dynamic or Static Objective Function;

- One or Various Neighborhood Structures ;

- Memory Usage or Memory-less Methods.

Nature-inspired and Non-nature Inspired. This classification is based on

the origin of the algorithm. When the search process of the algorithm is bio-

inspired and, for example, it imitates elements form the social behavior of

some physical species it can be classified into the Nature-inspired algorithms.

It this class we can individuate algorithms such as Particle Swarm Optimiza-

tion [40] and Ant Colony Algorithm. The Non-nature inspired algorithms

can be, for instance, Iterated Local Search or Tabu Search.

Population-based and Single-point Search. When algorithms share the

property of describing a trajectory in the search space during the search

process (trajectory methods) and the trajectories work on single solutions, the

algorithms are called Single-point searches. Single-point search techniques

encompass local search-based metaheuristic such as Variable Neighborhood

Search (VNS ) [57] or Iterated Local Search. Population-based algorithms

perform search processes which describe the evolution of a set of points in

the search space.

Dynamic and Static Objective Function. Some algorithms keep the ob-

jective function given in the problem representation constant while others

modify it during the search. The modification of the objective function helps

to escape from local minima because the search landscape is modified by

trying to incorporate information collected during the search process.

One and Various Neighborhood Structures. When metaheuristcs use a set

of neighborhood structures to have the possibility to diversify the search by

swapping between different landscapes, they are classified as Various Neigh-

borhood Structure Techniques. An example is the Variable Neighborhood

Search. Other algorithms do not change the fitness landscape topology in

the course of the algorithm.
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Memory Usage and Memory-less Methods. Memory-less Algorithms per-

form a Markov process, as the information they exclusively use to determine

the next action is the current state of the search process. In the case of

Memory Usage Techniques we have to distinguish between the use of short

term and long term memory. The first usually stores only the recently per-

formed moves, visited solution or decision taken. The second is usually an

accumulation of synthetic parameters about the search.

In the next part of the chapter we will focus our attention on the definition

of Population-based and Single-point Search.

4.4 Single-point Search Techniques

The class of Single-point Search Techniques are characterized by a trajec-

tory method, it means the search phase is based on trajectory in the search

space. In other words, the search process guided by a trajectory method can

be seen as the evolution in time of a discrete dynamical system [6]. Starting

from an initial solution the algorithm describes a trajectory in the search

space. In the simplest case, a trajectory can be composed of two parts: a

transient phase followed by an attractor. An attractor can be a fixed point,

a cycle or a complex attractor.

The trajectory is an important feature also because it gives information

about the behaviour of the algorithm and its ability to tackle the problem

under study.

A classical example of Single-point Search Method is the Simulated An-

nealing [41] [13].

4.4.1 Simulated Annealing

Simulated Annealing (SA) is one of the oldest metaheuristics and it has

a strategy to escape from local minima. SA was first introduced as a Com-

binatorial Optimization tool by Kirkpatrick et al. [41] and Cerny [13].

This algorithm is inspired by the annealing process of metals and glass,

which assumes a low energy configuration when cooled with an appropriate
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cooling schedule. The basic idea behind SA is to modify the local search in

order to accept, in probability, worsening solutions. The general framework

of SA is the following:

Algorithm 4.4.1: SA Procedure(Search Space N, function f)

procedure SA Algorithm(N, f)

Generate an initial solution : S

Initialize the parameter : T

repeat

Generate : S
′
, S

′ ∈ N(S)

if f(S
′
) < f(S)

then S ← S
′

else accept that : S ← S
′
, with probability : P = e−

f(S
′
)−f(S))
T

Update : T

until (end condition)

return (Ŝ)

Generally, the algorithm starts from an initial solution and by initializing

the so called temperature parameter T . It is important to underline that T

decreases during the search phase, thus at the beginning of the search the

probability of accepting uphill moves is high and it gradually decreases. We

can say that in the first steps the algorithm is doing an exploration of the

search space and, when the “temperature” T starts to decrease, the algorithm

concentrates its effort to converge to a (local) minimum.

In other words, SA, with respect to local search, only accepts partial

neighborhood exploration and implements the intensification/diversification

strategy by means of the annealing (decrease) of parameter T [64].

SA has been applied to several Combinatorial Optimization problems,

such as Quadratic Assignment Problem (QAP) and the Job Shop Scheduling

(JSS ) [30]. Nowadays it is used as a component in metaheuristics, rather than
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applied as stand-alone search algorithm.

4.5 Population-based Search Techniques

When an algorithm considers a set (i.e. a population) of solutions rather

than a single solution it is called a Population-based approach. These al-

gorithms provide a natural, intrinsic way for the exploration of the search

space while dealing with a population of solutions. Moreover, the final per-

formance depends strongly on the way the population is manipulated. In

Combinatorial Optimization the most studied population-based methods are

Evolutionary Computation (EC ) and Ant Colony Optimization (ACO).

In the Evolutionary Computation approach, a population of potential

solutions (i.e. individuals) is modified by recombination and mutation op-

erators. Recombination or crossover operator recombines two or more solu-

tions to produce new possible solutions. A Mutation or modification operator

causes a change in a solution obtaining a new one.

In ACO a colony of artificial ants is used to construct solutions guided

by the pheromone trails and heuristic information.

We shall now describe this algorithm in more details.

4.5.1 Ant Colony Optimization (ACO)

Ant Colony Optimization is a metaheuristic approach proposed by Dorigo

[21] [25] [22]. In the course of this section, we keep close to the description

as given in [23].

Ant algorithms are inspired by the observation of real ant colonies. Social

insects, as ants, live in colonies and their behaviour is directed more to the

survival of the colony as a whole than to that of a single individual component

of the colony. Social insects are really interesting for the high structuration

level that their colonies can achieve. In the case of ant colonies it is the

foraging behaviour, and, in particular, the way in which ants can find the

shortest paths between food sources and their nest.

When ants are walking from the food sources to the end and vice versa,
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Figure 4.1: Experimental setup for the double bridge experiment. (a) Branches
have equal length. (b) Branches have different length.

they deposit on the ground a special substance called pheromone, in such a

way to form a pheromone trail. Each ant can smell this substance and, when

choosing its way, the ant chooses, in probability, paths marked by a strong

pheromone concentrations.

The pheromone trail allows the ants to find their way to come back to

the food source or to the nest.

In other words, when more paths are available from the nest to a food

source, a colony of ants may be able to exploit the pheromone trails left by

the individual ants to find the shortest path from the nest to the source and

vice versa. This behaviour is possible to demonstrate experimentally.

One important study was designed and run by Deneubourg et al. [20].

This experiment used a double bridge connecting a nest of ants of the Ar-

gentine ant species I. humilis and a food source. The experiments were run

varying the length of the two branches of the double bridge. More precisely,

in the first experiment the bridge had two branches with the same length

(see Fig. 4.1a).

At the start, the ant were left free to walk in the double bridge from the

nest to the source, and the amount of ants walking in the two bridges were

observed. The final result was that, although in the initial phase random

choices occurred, eventually all the ants used the same branch [26]. This

is because in the initial part of the experiments no pheromone on the two

branches was present. Hence, the ants did not have any preference with

respect to which branch to choose and they selected the branches with the
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same probability. Yet, because of random fluctuations, a few more ants will

select one branch over the other. While walking, ants deposit pheromone, so

a larger amount of ants in one branch results in a larger amount of pheromone

on that branch; this quantity of pheromone stimulates ants to choose that

branch again, and so on until finally the ants converge to one single path.

This result is an example of self-organizing behaviour of the ants.

In the second experiment (see Fig. 4.1b), one branch was double the

other. In this case, after some time all the ants chose to use only the short

branch. When ants start to move in the double brindge, they choose the path

randomly because the two branches appear identical to them ants. Now,

because one branch is shorter than the other, the ants choosing the short

branch are the first to reach the food and to start their return to the nest.

At this point, when they choose between the short and the long branches,

the higher level of pheromone on the short branch will bias they decision.

Therefore, pheromone starts to accumulate faster on the short branch, which

will be used by all the ants.

It is interesting to note that a single ant gives only a very small con-

tribution but it is the ensemble of ants which presents the shortest path

finding behaviour [23]. Another important point is that ants perform this

specific behaviour using a simple form of indirect communication mediated

by pheromone lying, known as stigmergy.

The model inspired by ants foraging behaviour is and interesting model for

artificial multi agent systems applied to the solution of difficult optimization

problems.

Differences between ACO and real ants’ behaviour

In Ant Colony Optimization (ACO) algorithm a colony of artificial ants

(agents) cooperate in finding a solutions to difficult discrete optimization

problem. Artificial ants are an abstraction of real ants and, on the other

hand, they have been enriched with some capabilities which do not find a

natural counterpart.

The first similarity is that, as real ant colonies, ant algorithms are com-
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posed of a populations, or colonies, of concurrent and asynchronous entities

globally cooperating to find a good solution for the problem under study.

As in the reality, artificial ants modify some aspects of their environment.

While real ants deposit pheromone while they are walking, artificial ants

change some numeric information locally stored in the problem’s state they

visit. This information is the ant’s current history/performance and can be

read/written by any ant. This numeric information can be called artificial

pheromone trail. ACO algorithm uses another real aspect of real ant colonies,

more specifically of the real pheromone. Real pheromone evaporates over

time, in ACO an evaporation mechanism is implemented. The pheromone

evaporation allows the ant colony to slowly forget its past history so that it

can direct its search towards new directions.

Artificial and real ants share a common task: to find a shortest path

joining the nest to the destination food sites. In the algorithm it is the ability

to find the path with the minimum cost from an origin to an end state. This

is possible because artificial ants, as real ants, build a solution applying a

probabilistic way to move through adjacent states. The policy by which

the ants choose the direction is a function of both the a priori information

represented by the problem specification and of the local modifications in the

environment induced by past ants.

ACO metaheuristc has also some characteristics of its own. Artificial ants

live in a discrete world and their moves consist of transitions from discrete

states to discrete states, moreover they have an internal state. This state

contains the memory of the past actions. In the algorithm the pheromone

deposited by the ant is a function of the quality of the solution found. An-

other difference between artificial ants and real ants is that artificial ants’

timing in pheromone laying is problem dependent, and often does not reflect

ants’ behaviour.

The last difference is that ACO algorithms, to improve the overall system,

can be enriched with extra capabilities like local optimization, backtracking

and so on, that cannot be found in real ants.
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ACO framework

In ACO algorithms each “ant” builds a solution starting from an initial

state selected according to some problem dependent criteria. A solution is

expressed as minimum cost (shortest) path through the states of the prob-

lem in accordance with the problem’s constraints. A single ant is able to

build a solution but only the cooperation among all the agents of the colony

concurrently building different solutions is able to find high quality solutions.

Each ant builds a solution by moving through a sequence of states. Moves

are selected by applying a stochastic local search policy directed by:

– Ant private information: the ant internal state or memory. The ant’s

internal state stores information about the ant past history which can

be used to carry useful information on the solutions or part of them;

– Pheromone trails accumulated by all the ants from the beginning of the

search process and a priori (heuristic) problem-specific information.

The combination of available pheromone and heuristic values defines ant-

decision tables, that is, probabilistic tables used by the ants’s decision policy

to direct their search towards the most interesting regions of the search space.

An important point to underline is that the stochastic component of the move

choice decision policy and the pheromone evaporation avoid early stagnation

of all the ants in a part of the search space.

In this section, a high level description of the ACO metaheuristic is re-

ported in pseudocode, divided in three parts. This pseudocode is taken from
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[23].

Algorithm 4.5.1: ACO Pseudocode - Part 1()

procedure ACO Metaheurist()

while termination criterion not satisfied

do



schedule activities

ants generation and activity();

pheromon evaporation();

daemon actions();

end schedule activities

end while

end procedure

Algorithm 4.5.2: ACO Pseudocode - Part 2()

procedure Ants Generation and Activity()

while available resources

do

{
schedule the creation of a new ant();

new active ant();

end while

end procedure
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Algorithm 4.5.3: ACO Pseudocode - Part 3()

procedure New Active Ant()

comment: ant lifecycle

initialize ant();

M = update ant memory();

while current state 6= target state

do



A = read local ant routing table();

P = compute transition probabilities(A,M, problem constraints);

next state = apply ant decision policy(P, problem constraints);

move to the next state(next state);

if online step by step pheromone update

then

{
deposit pheromone on the visited arc();

update antrouting table();

end if

end while

if online delayed pheromone update

then


evaluate solution();

deposite pheromone on all visitedarcs();

updating ant routing table();

end if

die()

end procedure

The daemon action() refers to actions such as local optimization pro-

cedures. It is optional and it is suggested in the case of missing heuristic

information.
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Nest 

Source 

Figure 4.2: Representation of a possible graph were ants move, from the nest to
the source.

Ant System (AS) and the Traveling Salesman Problem (TSP)

To understand better how ACO algorithm works, in this section we will

present one of the most important application of ACO: the travelling sales-

man problem (TSP) [49].

The following is a general definition of the TSP. Consider a set N of

nodes, representing cities, and a set E of arcs fully connecting the nodes N .

Let dij be the length of the arc (i, j) ∈ E, that is the distance between cities

i and j, with i, j ∈ N . The TSP is the problem of finding a minimal length

Hamiltonian circuit on the graph G = (N,E), where an Hamiltonian circuit

of graph G is a closed tour visiting once and only once all the n = |N | nodes

G, and its length is given by the sum of the lengths of all the arcs of which

it is composed.

How ACO algorithm works in the TSP problem is explained through the

Ant System (AS) [24], the first version of this approach. In this case artificial

ants build solutions, which in the TSP are tours, by moving on the problem

graph from one city to another. The maximum number of iteration that the

algorithm is allowed to do is tmax. During each iteration m ants build a tour

executing n steps in which a probabilistic rule is applied, as we shall show

below. In other words, when in node i the ant chooses the node j to move

to, and the arc (i, j) is added to the tour under construction. The algorithm

is repeated until the ant has completed its tour.

In the AS algorithm, the pheromone can be deposited in different ways

either while building a solution or after the ants have built a complete tour.
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Figure 4.3: Ant, in the node i, chooses the next node (j or y) in according with
the probability in the arcs, such as Pij and Piy

Our description is concentrated on the second way to update the pheromone.

After ants have built their tours, each ant deposits pheromone on the

pheromone trail variables associated to the visited arcs to make the visited

arcs become more desirable for future ants. The pheromone trail τij(t) asso-

ciated to arc (i, j) represents the desirability of choosing city j when in city

i. The quantity of pheromone deposited in the arcs is proportional to the

quality of the solutions, this choice helps to direct the search towards good

solutions.

Each ant has a memory of all the visited cities and is called tabu list. The

memory is used to define, for each ant k, the set of cities that an ant located

on city i still has to visit.

The ant-decision table Ai = [aij(t)]|Ni| of node i is obtained by the com-

position of the pheromone trail values with heuristic values as follow:

aij =
[τij(t)]

α[ηij]
β∑

l∈Ni
[τij(t)]α[ηij]β

∀j ∈ Ni

where τij(t) is the amount of pheromone trail on arc (i, j) at time t,

ηi,j = 1/dij is the heuristic value of moving from node i to node j, Ni is the

set of neighbors of node i, and α and β are two parameters that control the

relative weight of pheromone trail and heuristic information.

The probability with which an ant k chooses to go from city i to city

j ∈ Nk
i while building its tour at the t-th algorithm iteration is:
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pkij(t) =
aij(t)∑
i∈Nk

i
aij(t)

where Nk
i ⊆ Ni is the set of nodes in the neighborhood of node i that ant

k has not visited yet.

After all ants have completed their tour, pheromone evaporation on all

arcs is applied, and then each ant k deposits a quantity of pheromone4τ kij(t)
on each arc that it has used:

4τ kij(t) =

{
1/Lk(t) if (i, j) ∈ TK(t)

0 if (i, j) 6∈ TK(t)

where T k(t) is the tour done by ant k at iteration t, and Lk(t) is its length.

Obviously 4τ kij(t) depends on how well the ant has performed: the shorter

the tour done, the greater the amount of pheromone deposited.

In pratice, the pheromone is updated in the following way:

τij(t)← (1− ρ)τij(t) +4τij(t)

where 4τij(t) =
∑m

k=14τ kij(t), m is the number of ants at each iteration

and ρ ∈ (0, 1] is the pheromone trail decay coefficient.

AS algorithm demonstrates really good solutions in term of quality and

convergence and it is the first ACO algorithm and the base for many im-

provement of this method.

MAX −MIN Ant System (MMAS)

Ant System showed to be an efficient method to tackle hard combinatorial

optimization problems but it was rather poor in the presence of high number

of cities in the TSP (or variables). Researches on ACO have demostrated

that a strong exploitation of the best solutions found during the search can

help to improve the performance of the algorithm. Another important point

to achieve better performance is to combine the previous approach with a

mechanism to avoid premature stagnation of the search.

In 2000, Stützle and Hoos [68] have presented the MAX −MIN Ant
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System (MMAS), an Ant Colony Optimization algorithm derived from Ant

System.

They have demostrated that MMAS is able to reach a strong exploita-

tion of the search space by adding pheromone only to the best solution during

the pheromone trail update. Moreover they applied a simple method for lim-

iting the strenghts of the pheromone trails that effectively avoids premature

convergence of the search. In what follows, the most important features of

MMAS are studied.

The MAX −MIN Ant System differs with respect to the AS in three

key aspects:

(i) only a single ant deposits pheromone after each iteration. It can be the

ant that reached the best solution in the current iteration (interation-

best ant) or the one which found the best solution from the beginning

of the trial (global-best ant);

(ii) the range of possible pheromone trails on each solution component is

limited to an interval [τmin, τmax];

(iii) the pheromone trails is deliberately initialized to τmax.

Point (i) helps to exploit the best solutions found during an iteration or

during the run of the algorithm. Then, only a single ant is used to update

the pheromone trails after each iteration. Now, the pheromone trail update

rule is:

τij(t+ 1)← (1− ρ)τij(t) +4τ bestij

where 4τ bestij = 1/f(sbest) and f(sbest) is the solution cost of either the

iteration-best ( sib ) or the global-best solution ( sgb ). Using sgb, the search

may concentrate too fast on this solution limiting the founding of other solu-

tions. This situation can be avoided applying the sib since the iteration-best

solutions may differ iteration to iteration allowing to reinforce a larger num-

ber of solution components. It is possible to use a mixed approach, for

example using sib as a standard approach for updating the pheromone and

using sgb onlyevery fixed number of iterations.
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Using these ways to update the pheromone trail, solutions elements which

frequently occur in the best found solutions get a large reinforcement.

The second point restricts the range of possible values for the probability

of choosing a specific arc, this helps to avoid early stagnation. For the same

reason, in theMAX −MIN Ant System, the pheromone trails are updated

using a proportional mechanism: 4τij(t) ∝ (τmax−τ(i,j)(t)). This mechanism

is called trail smoothing mechanism and is useful when some pheromone trails

are close to τmax while most of the others are close to τmin. It is shown by

[68] that by limiting the influence of the pheromone trails it is possible to

avoid the relative differences between the pheromone trails from becoming

to high during the iterations of the algorithm.

The last point (iii), require that the pheromone trails are initialized to

τmax. In other words, after the first iteration all pheromone trails correspond

to τmax(1). This is possible by setting τ(0) to some arbitrarily high value.

After the first iteration, the pheromone will be set to τmax(t).

This way of initializing the pheromone allows us to increase the explo-

ration of solutions during the first iterations of the algorithm. Moreover the

probability to select a solutions evolve more slowly, and hence, the explo-

ration of solutions is favoured.

MMAS achieves a strongly improved performance compared with other

versions of ACO’s algorithm by exploiting more in deeph the best solutions

found during the search, and by directing ants’ search to very high quality

solutions and by avoiding premature convergence of the ants’ search.

This concludes our presentation of the optimization algorithms that we

are going to use for the remaining of the thesis.





Chapter 5

Evolutionary Model Based

Experimental Design

5.1 Some Initial Considerations

Our problem is characterized by high dimensionality of the search space,

due to the very large number of elements to be selected, the number of

different ways in which elements can be composed, the different laboratory

protocols and the network of potential interactions between elements.

A possibility is to combine approaches from Design of Experiments and

metaheuristic algorithms to guide the exploration of the space. Some exam-

ples of this approach can be found in the literature.

For example in Koukouvinos et al. [45] a hybrid simulated annealing

genetic algorithm (SAGA) is used for generating Optimal Designs. The hy-

brid SAGA combines features such as the power of the Genetic Algorithm

(GA) and the speed of a local optimizer such as Simulating Annealing (SA),

merging the previous metaheuristics into a powerful hybrid optimization al-

gorithm. This class of hybrid metaheuristics has enabled the authors to build

optimal designs.

In our case, the ultimate aim is to test the possibility of exploiting bio-

inspired algorithms combined with statistical techniques to search in a dis-

crete sequence space for a target structure. We wish to define a new approach
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for optimization based on Evolutionary Model Based Experimental Design

that has been proposed by [29] [10] [5]. The Evolutionary Model Based

Experimental Design must be able to:

– reach the optimum of unknown functions with few iterations of the algo-

rithm;

– explore a very large part of the search space;

– reduce the number of real experimentations in such a way as to save money

and time.

5.2 Model Based Ant Colony Design (MACD)

5.2.1 Basic idea

As already pointed out, in our biological problem the direct experimental

evaluation of potential solutions is the only option to know the performance

of an enzyme but the experimentation is costly and time consuming.

We propose a method that couples real experimentation with simulated

experiments. We base our idea on the concept of closed loop evolution [42]

where the solutions are evaluated in the real world by conducting a physical

experiments and the creation of new candidate solutions is operated in a

simulation setting.

Closed loop optimization deals at the same time with concepts from statis-

tics and metaheuristic algorithms. In general, the purpose of the approach

is optimization, rather than global modeling. The convergence of these tech-

niques was proposed for the first time by Box [11] who incorporated replica-

tion of experiments and considered how to minimize the effects of nuisance

factors. The prevalence in closed loop optimization of batch experiments,

where many solutions can be evaluated in parallel, suggests the use of pop-

ulation based approaches (see Chapter 4).

An outline of the closed loop optimization is given in Fig. 5.1. Solutions

are generated by an algorithm in computer simulation, but their evaluation is
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Figure 5.1: A outiline of closed loop optimization

achieved by physical experiment. Evaluations are fed back to the simulative

phase of the approach and its generation of subsequent solutions is a function

of these. Thus the process has the form of a closed loop, being at least

partially sequential.

Closed loop optimization has different features and limits that can be

summarized as follows:

– fitness function design: it is the process that transforms a real system

into a focused programme of optimization based on defined measures

of quality or performance. A possible solution is to use a simulator as

in the theory of Computer Experiments. This has led to the use of sur-

rogate models (emulators), i.e. simpler models which represent a valid

approximation of the original simulator. These emulators are statistical

interpolators built from the simulated input-output data. Predictions

at untried points, most useful in the case of expensive simulations, are

made by the surrogate models [4].

– evaluations of experiments : the total amount of evaluations available is of-

ten restricted below what is confortable for obtaining optimal or close
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to optimal solutions. The combination of a predictive model, estimated

from a first population of real experimental runs, and an efficient opti-

mization algorithm to search in the space of candidate solutions during

the simulative phase is an approach able to explore the search space

although in a predictive way.

– noise, uncertainty and uncontrolled factors : experimental measurements

are often noisy due to factors in the environment that are not involved

in the optimization process. In the Design of Experiments, noise is

estimated and accounted for by using replication, whilst disturbances

to estimation caused by nuisance factors are mitigated using blocking,

and randomization. When dealing with optimization, these concepts

are important to be considered in the construction of the solutions.

– population size (a set of candidate solutions): in a optimization approach,

the population size is usually a free parameter of the algorithm. In

closed loop scenarios, the offspring population size may be largely dic-

tated by details of the experimental setup. For example, if chemicals

are to be tested in a 96-well plate (a standard piece of laboratory equip-

ment), then 96 may be the maximum population size.

– constraints : the real world nature of experimental problems means that

finding an appropriate representation and set of constraints can be

challenging. It is important to consider a set of constraints that are

not overly restrictive and still allow innovative solutions to be found,

whilst maintaining feasibility.

Starting from these concepts we develop our methodology, the Model

Based Ant Colony Design. The method is described in the following section.

5.2.2 The Approach

Model Based Ant Colony Design (MACD) is based on the idea behind

closed loop optimization and the procedure boosts an optimization algorithm

by a simulator (strictly speaking an emulator), in our case a statistical model.

More precisely, MACD combines:
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– MAX −MIN Ant System (MMAS, see Chapter 4). MMAS is cou-

pled with a local search. We select the Simulated Annealing (SA) as the

local search method because it has demonstrated highest performance

in the simulation study (see Section 5.5);

– linear regression model with binary predictive variables, which is estimated

from the data by the least squares method. This model does not include

interactions between variables.

The following steps summarize our procedure:

1. Randomly generate and evaluate an initial population (size N , in our

application N = 96. 96 corresponds to the dimension of the well-

plate.) of m − tuples. With m − tuples we intend a sequence of 4

pseudo-domains forming an enzyme so m = 4;

2. Estimate the predictive statistical model based on the population of

the available m− tuples or enzymes;

3. Select a new set of N m− tuples (in the application m = 4) by the so-

lution construction process implemented in theMMAS. For this pur-

pose, we create a graph where each node represents a specific pseudo-

domain. A solution is a path with length 4 composed of 4 nodes con-

nected by arcs. In the biological application, a node corresponds to

a pseudo-domain and an arc to the connection between the pseudo-

domain i in position k and the pseudo-domain j in position k + 1;

4. Identify the best predicted m− tuple and use it to start a local search

by the Simulated Annealing. Make a prediction of the response value

using the fitted statistical model;

5. If the predictive response value of the new solution is larger than the

one selected in Step 4, the new solution replaces the old one in the

population obtained at Step 2;

6. The probability matrices are updated (see Chapter 4);



94 Evolutionary Model Based Experimental Design

Initial Random Trial of 

Real Proteins 

Predictive Model Ant Colony Optimization 

Prediction Candidate 

Proteins 

Update Probability Matrix 

Stop Criterion 

Satisfied? 

New Trial of Proteins 

Real Evaluation 

Is Max Number 

of Trials reached? 

Library of Proteins 

No 

Yes 

No 

End 

Yes 

Simulative Model Based Phase 

Learning Phase 

Apply Local Search 

around the best (i.e. SA) 

– if needed 

Figure 5.2: Model Based Ant Colony Design.

7. Repeat steps from 3 to 6 until the stop criterion is satisfied. In our case,

we stop after T = 100 iterations. When the stop criterion is satisfied,

the last set of m − tuples proposed by the approach is chosen as the

new set of candidate solutions to be tested;

8. The new set of candidate solutions is evaluated and included in the set

of the m− tuples that have been already evaluated;

9. Repeat the steps from 2 to 8 for a fixed number of experimental gen-

erations.

The procedure describe above improves upon existing methods in two

main directions:

1. Thanks to the statistical model, we can simulate the problem and move

in the search space as many times as we want, hopefully improving the

solutions step by step;
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2. The iterated refinement of the predictive model provides the optimiza-

tion algorithm with predictive capability of the model resulting in an

increased accuracy during the optimization process.

5.3 Näıve Bayes Ant Colony Optimization (NACO)

5.3.1 Basic idea

In our problem, the experiments are costly and time consuming thus

empirical evidence provided by well-designed experiments is crucial to reach

a satisfactory result.

In an adaptive experiment, the data gathered from earlier experiment

batches is used to improve the next experiments in order to be maximally

informative in a properly defined sense. In this framework, sometimes re-

ferred to as Adaptive Design Optimization (ADO), the experimenter has

some degree of control over what experimental points to investigate.

In this setting, one important point is how to learn the most about the

system under study using the least number of trials. This is non trivial when:

– The goal is to learn about a complex system composed by several experi-

mental input variables with patterns of interactions;

– Experiments are costly or time-consuming and each input-output pair pro-

vides only little information about the whole system.

In this work, we tackle the ADO problem using a Näıve Bayes Classifier

combined with Ant Colony Optimization. Our strategy calculates which

elements affect mostly the response of the system for each position and uses

this information to help the metaheuristc algorithm to choose the next set

of candidate solutions.

The Näıve Bayes Approach (see Chapter 3) has a strong assumption and

it assumes that the attributes X1, ..., Xn are all conditionally independent

of one another, given the response Y . It has the advantage to simplify the

representation of the probability o X given Y but with the Näıve Bayes Clas-

sificator it is not possible to understand the relations between the attributes.
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In our problem it could be a strong limitation because we know that domains

have significant interactions between them in a protein (see Chapter 1).

The combination of ACO and Näıve Bayes Approach can avoid this prob-

lem. ACO is based on probabilistic matrices where the best path has higher

probability to be chosen. A path is composed by nodes and arcs. In our prob-

lem nodes can be seen as pseudo-domains and an arc connecting a pseudo-

domain to the next one can be seen as the relation that exists between the

two pseudo-domains. Then, ACO implicity implies the sequential relation-

ship between pseudo-domains. In fact, the response of an enzyme depends on

the pseudo-domain and its position. Näıve Bayes Ant Colony Optimization

(NACO) improves upon the limits of the individual techniques enabling us

to deal with the very large experimental space of the possible solutions.

5.3.2 The Approach

Näıve Bayes Ant Colony Optimization (NACO) is an optimization al-

gorithm based on the combination between Ant Colony Optimization and

Näıve Bayes Classifier. NACO extracts the information from the data us-

ing the Näıve Bayes Approach and explores the search space by the ACO

algorithm. At the same time, the better pseudo-domains are individuated in

each position and the interactions between positions are indentified.

The following steps summarize the NACO approach:

1. Random generation and evaluation of an initial population;

2. Individuation of the Iteration Best Solution;

3. Calculation of the Näıve Bayes Classifier on the available solutions

evaluated (N = 96). The Näıve Bayes Classifier is applied on each

position of the sequence on desirable values of the response. At each

iteration it focuses on values of the response greater than a certain

threshold γ ∈ R;

4. Use of the similarity matrix as heuristic information;



THE APPROACH 97

5. The probability matrix is updated using the information extracted in

points 2, 3 and 4;

6. Selection of the next population of candidate solutions using the prin-

ciple of Ant Colony Optimization;

7. The new set of candidate solutions is experimentally evaluated and

included in the set of solutions that has been already evaluated;

8. If stop criterion is reached, then stop. Otherwise repeat points from 2

to 7;

In Fig. 5.3 it is shown how the similarity matrix is used as heuristic

information. For each pseudo-domain a measure of similarity is calculated

(see Chapter 1) with respect to all the other n−1 pseudo-domains. Following

the identification of the Iteration Best Solution, the weight of each pseudo-

domain is increased proportionally to its similarity with the best pseudo-

domain identified for a given position. The rationale behind this is that

once a good pseudo-domain is identified for a given position, the algorithm

exploits the surrounding experimental space using the similarity matrix.

Fig. 5.4 clarifies point number 5. At iteration t, agents move over the

graph according to the best paths identified in the previous steps (Fig. 5.4

(a)). Following candidate solution evaluation, the Iteration Best Solution is

individuated and the corresponding pheromone path is updated (Fig. 5.4

(c)). At this point, using the Näıve Bayes Classifier the best pseudo-domains

for each position are identified, namely those that anticipate to yield a fitness

higher than a suitable chosen fitness treshold γ ∈ R (Fig. 5.4 (b)). For any

given arc connecting pseudo-domain i with pseudo-domain j, the weight λij

is increased according to the Näıve Bayes Classifier. The set of {λij} is called

Näıve Information. Now, the ant-decision table Ai = [aij(t)]|Ni| of node i will

be obtained by the composition of the pheromone trail values with heuristic

values and with Näıve Information as follows:

aij =
[τij(t)]

α[ηij]
β[λij]

δ∑
l∈Ni

[τij(t)]α[ηij]β[λij]δ]
∀j ∈ Ni
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Figure 5.3: The Similarity Matrix is used as a Heuristic Information.

where τij(t) is the amount of pheromone trail on arc (i, j) at time t, ηi,j =

1/dij is the heuristic value of moving from node i to node j, λij is the Näıve

Information on arc (i, j) at time t. Ni is the set of neighbors of node i,

and α, β and δ are three parameters, chosen by the experimenter, that con-

trol the relative weight of pheromone trail, heuristic information and Näıve

Information .

The probability with which an ant k chooses to go from domain i to

domain j ∈ Nk
i while building its tour at the t-th algorithm iteration is:

pkij(t) =
aij(t)∑
i∈Nk

i
aij(t)

where Nk
i ⊆ Ni is the set of nodes in the neighborhood of node i that ant

k has not visited yet.

In the context of Enzyme Engineering and Design, NACO will extract

information from few data and it will individuate the best connection between

elements (i.e. pseudo-domains) in a sequence, which is an enzyme.
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Figure 5.4: Updating Phase of the Näıve Bayes Ant Colony Optimization.

5.4 Methodological Issue

In this section, we describe the development of two Evolutionary Exper-

imental Designs with the ultimate aim to aid the exploration of the enzyme

combinatorial sequence space to identify a functional enzyme from a large li-

brary. In this perspective, we have designed the search algorithms bearing in

mind that candidate enzymes shall be experimentally characterized in terms

of expression, solubility, structural features and enzymatic activity. In order

to be experimentally tested, candidate proteins shall respect the following

biological restrictions already introduced in Chapter 1:

i. The number of cysteine residues shall be no higher than 9 and different

from 5 and 7;

ii. The percentage of coil shall not be higher than 70.

These constraints have been implemented in the search algorithm. Step by

step, a special function is dedicated to check if a candidate solution respects

the biological restrictions and if it can be tested.

As benchmark functions we choose three mathematical models, which are

described below.
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Polynomial regression model (PRM)

This structure is described by a polynomial regression model with 380

main effects (i.e. the effects of one of the i, with i = 1, . . . , 95, pseudo-

domains in each j, with j = 1, . . . , 4, different positions) and 18 interactions

between pairs of variables and 12 interactions among triplets. The interac-

tions between pairs of variables and triplets are obtained considering the best

3 pseudo-domains for each position and combining them in pairs and triplets.

This model represents a enzyme fitness landscape dominated by strong inter-

actions (i.e. epistasis), which occurs when the effect of one pseudo-domain

depends on the presence of another [7]. This kind of fitness landscapes is

characterized by ruggedness and local optima, and may range from “Mt. Fu-

jiyama landscape”(5.5(a)) or “Smooth landscape”(5.5(b)) to highly rugged

“Badlands‘landscape”(5.5(c)).

The resulting simulative Polynomial regression model closely resembling

a “Smooth landscape”is formalized as follows:

y =
95∑
i=1

4∑
j=1

βijxij + α1x2,1x95,2 + α2x2,1x49,3 + α3x2,1x95,4 + α4x95,2x49,3

+ α5x95,2x95,4 + α6x49,3x95,4 + α7x1,1x93,2 + α8x1,1x48,3 + α9x2,1x94,4

+ α10x93,2x48,3 + α11x93,2x94,4 + α12x48,3x94,4 + α13x3,1x94,2 + α14x3,1x50,3

+ α15x3,1x1,4 + α16x94,2x50,3 + α17x94,2x1,4 + α18x50,3x1,4 + δ1x2,1x95,2x49,3

+ δ2x2,1x95,2x95,4 + δ3x2,1x49,3x95,4 + δ4x95,2x49,3x95,4 + δ5x1,1x93,2x48,3

+ δ6x1,1x93,2x94,4 + δ7x93,2x48,3x94,4 + δ8x1,1x48,3x94,4 + δ9x3,1x94,2x50,3

+ δ10x3,1x94,2x1,4 + δ11x94,2x50,3x1,4 + δ12x3,1x50,3x1,4 (5.1)

where the coefficients βij (where i = 1, . . . , 95 and j = 1, . . . , 4) are:

βi1 95 real numbers equally spaced between −30, . . . , 30;

βi2 95 real numbers equally spaced between −20, . . . , 20;

βi3 95 real values obtained from the evaluation of a parabolic function

−10z2 + z + 30 with z in −10, . . . , 10;
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(a)

(b)

(c)

Figure 5.5: Enzyme fitness landscape type.
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βi4 95 real values obtained from the evaluation of a parabolic function

10z2 + z − 30 with z in −10, . . . , 10;

α, δ coefficients of interactions among pairs and triplets of the three best xi

for each j.

Furthermore each xij represents a specific pseudo-domain i in the posi-

tion j. xij is equal to 1 if the pseudo-domain is in the considered sequence

otherwise it is 0. The optimal solution is (1, 95, 49, 95) with the response

value equal to 184.961.

Polynomial sparse regression model (PSRM)

The second formal structure to generate data represents the situation

where some elements for each position j, in the enzyme sequence, highly

influence the response of the system and the others are close to 0. This

model closely represents an experimental enzyme fitness landscape where

the majority part of enzyme sequences do not possess any function (zero

fitness) whereas rare functional enzymes are tightly clustered together [1].

The values of the coefficients determine the shape of the landscape.

The resulting simulative model is:

y =
95∑
i=1

4∑
j=1

βijxij + α1x54,1x7,2 + α2x54,1x63,3 + α3x54,1x16,4 + α4x7,2x63,3

+ α5x7,2x16,4 + α6x63,3x16,4 + α7x48,1x17,2 + α8x48,1x91,3 + α9x48,1x76,4

+ α10x17,2x91,3 + α11x17,2x76,4 + α12x91,3x76,4 + α13x12,1x20,2 + α14x12,1x84,3

+ α15x12,1x47,4 + α16x20,2x84,3 + α17x20,2x47,4 + α18x84,3x47,4 + δ1x54,1x7,2x63,3

+ δ2x54,1x7,2x16,4 + δ3x54,1x63,3x16,4 + δ4x7,2x63,3x16,4 + δ5x48,1x17,2x91,3

+ δ6x48,1x17,2x76,4 + δ7x17,2x91,3x76,4 + δ8x48,1x91,3x76,4 + δ9x12,1x20,2x84,3

+ δ10x12,1x20,2x47,4 + δ11x20,2x84,3x47,4 + δ12x12,1x84,3x47,4 (5.2)

As before, xij equal to 1 when the pseudo-domain is in the considered se-

quence and in a specific position otherwise it is 0. In this case the relevant
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elements and their coefficients, drawn from a normal distribution N(35, 10),

are described in table 5.4.

Table 5.1: Non-zero domains

j = 1 j = 2 j = 3 j = 4
18 (40.131) 53 (36.991) 63 (42.866) 1 (34.591)
67 (32.378) 23 (38.578) 37 (25.229) 16 (49.442)
54 (43.981) 71 (31.034) 78 (31.903) 76 (40.864)
16 (27.829) 17 (44.619) 14 (34.850) 80 (37.748)
86 (35.693) 37 (35.352) 32 (26.392) 47 (38.896)
85 (37.257) 77 (37.346) 44 (29.733) 57 (32.174)
12 (41.074) 87 (34.551) 92 (32.147) 93 (35.515)
74 (28.378) 20 (39.471) 91 (37.414) 26 (36.408)
41 (29.302) 39 (33.131) 84 (35.480) 59 (32.628)
48 (43.378) 7 (46.291) 12 (32.061) 13 (32.710)

The values of the coefficients of the non-zero elements are shown in brackets

The optimal solution is (54, 7, 63, 16) with the response value equal to

232.426.

Discrete Rosenbrock Function

In mathematical optimization, the Rosenbrock function is a non-convex

function used as a performance test problem for optimization algorithms

introduced by Rosenbrock [65].

The global minimum is inside a long, narrow, parabolic shaped flat valley.

To find the valley is trivial. To converge to the global minimum, however, is

difficult.

The Rosenbrock function is defined by

f(x, y) = (1− x)2 + 100(y − x2)2 (5.3)

It has a global minimum at (x, y) = (1, 1) where f(x, y) = 0. A different

coefficient of the second term is sometimes given, but this does not affect the
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position of the global minimum.

A more involved variant is

f(x) =
N−1∑
i=1

[(1− xi)2 + 100(xi+1 − x2i )2] ∀x ∈ RN (5.4)

This variant has been shown to have exactly one minimum for N = 3 (at

(1, 1, 1)) and exactly two minima for 4 ≤ N ≤ 7.

In our case, N = 4 and each x is a vector of 4 elements. Each element in

x can assume 95 real numbers equally spaced between −5, . . . , 5.

5.5 Simulative Study

In this section we study the performance of MACD and NACO compared

with different versions of MAX −MIN Ant System. All the algorithms

are implemented in R. All algorithms have applied fitness functions (5.1),

(5.2) and (5.4) to determine the quality of candidate solutions and to test

their performance. The following five approaches are run for 100 simulations:

– MAX −MIN Ant System (MMAS);

– MAX −MIN Ant System with Iterative Improvement Local Search

(Local-MMAS);

– MAX −MIN Ant System with Simulated Annealing (SA-MMAS);

– Model Based Ant Colony Algorithm (MACD);

– Näıve Ant Colony Optimization (NACO).

The first three algorithms have the following settings:

The MACD has two different settings, one for the Simulative Model Based

Phase (S-MB phase) and one for the Learning and Experimental Phase (L-E

phase), as shown in table 5.4.
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N Gen. ρ Heuristic Local Seach Pred. Model
MMAS 96 53 0.80 No No No
Local-MMAS 96 27 0.80 No I.I. No
SA-MMAS 96 12 0.80 No SA No

Table 5.2: Paramenter Setting of the three standard algorithms. N is the popula-
tion size, Gen. the number of generations, ρ the evaporation factor, Pred. Model
stands for Predictive Model. I.I. is the Iterative Improvement Local Search and
SA is Simulating Annealing.

Steps Iteration p0 α
SA 2 190 0.80 0.95

Neighborhood
I.I. 204

Table 5.3: Paramenter Setting of the two Local Searches. I.I. stands for Iterative
Improvement Local Search and SA stands for Simulating Annealing

The parameter settings for NACO are shown in Table 5.5. From Table

5.5, it is possible to understand that in the simulative case studies the NACO

approach does not use any heuristic information. In the real case, this ap-

proach will include also the Similarity matrix presented in chapter 1. This

information will allow the method to better perform in the search phase and

to be faster in the search of a possible optimum.

Before to start the analysis of the algorithms, we test the performance of

the methods on the three benchmark functions. We apply a non parametric

analysis of variance based on the comparison of the medians. We compare

the distributions of the max values obtained from each methods using the

Kruskal-Wallis test [16]. The non parametric test compares between the

medians of samples to determine if the samples have come from different

methods. We select an α = 0.05. Looking at the resulting p-values for each

analysis we refuse the null hypothesis and we conclude that the behaviour of

the responses is significantly different between the different methods.
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S-MB Phase
N Gen. ρ Heuristic Local Seach Pred. Model

SA-MMAS 96 100 0.80 No SA Yes

N Gen.
L-E Phase 96 11

Table 5.4: Paramenter Setting of the Model Based Ant Colony Design. L-E Phase
is refered to the real experimentation.

N Gen. ρ Heuristic β δ threshold γ ∈ R
NACO 96 11(53) 0.80 No 1 2 80%

Table 5.5: Paramenter Setting of the Näıve Bayes Ant Colony Optimization. N
is the population size, Gen. the number of generations (11 in the case of PRM and
PSRM, 53 in the case of Discrete Rosenbrock Function), ρ the evaporation factor.
No heuristic information is used. β is the weight for the pheromone. δ controls the
weight of Näıve Information and γ is considered by the Näıve Bayes Classifier.

Using the Polynomial Regression Model (PRM) as the benchmark func-

tion,MAX −MIN Ant System (MMAS) is not able to find good solution

for this test case (Fig. 5.6). Clearly a local search technique to replace the

heuristic information is needed. We introduce two different local search algo-

rithms: (i) Iterative Improvement Algorithm and (ii) Simulated Annealing.

The first modification of the MMAS shows better results with respect to

the standard version but there is still room to improve the performance of

the algorithm. In fact using the Simulated Annealing as the local search we

are able to reach better results. In Fig. 5.6 (b) we can see that the median of

the distribution is higher for theMMAS with the Simulated Annealing. We

can say that the SA-MMAS has a better chance of reaching higher solutions

with respect to the other versions.

In Fig. 5.7 the behaviour of the three algorithms is confirmed with the

second test case. In this situation, the ability of SA-MMAS is more evident,

moreover it is able to find higher score values. In the last iterations, from

iterations 4000 to 5000, the performance of SA-MMAS and Local-MMAS
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Development of the Max Score Value over Run Length

Number of Function Evaluations
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Figure 5.6: Performance comparison between the algorithms without the im-
provement. The candidate solutions are evaluated with the Polynomial Regression
Model. (a) shows the development of the average max score value (calculated on
100 simulations) over run length and (b) Distribution (based on 100 simulations)
through boxplot representation.
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Figure 5.7: Performance comparison between the algorithms without the im-
provement. The candidate solutions are evaluated with the Polynomial Sparse
Regression Model. (a) shows the development of the average max score value (cal-
culated on 100 simulations) over run length and (b) Distribution (based on 100
simulations) through boxplot representation.
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Development of the Max Score Value over Run Length
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Figure 5.8: Performance comparison between the algorithms without the im-
provement. The candidate solutions are evaluated with the Discrete Rosenbrock
Function. (a) shows the development of the average max score value (calculated on
100 simulations) over run length and (b) Distribution (based on 100 simulations)
through boxplot representation.

are the same but it is likely that SA-MMAS finds better solutions in the

first 1000 function evaluations in comparison with all the other approaches.

In Fig. 5.8 is shown the behaviour of the three algorithms using the

Discrete Rosenbrock function as benchmark function. In this case the opti-

mization is aimed to minimize the function. The function evaluations 1 and

100 are not represented. As in the previous test cases, MAX −MIN Ant

System (MMAS) is not able to find a good solution. The Local-MMAS

shows good results with respect to the standard version but, also in this case,

SA-MMAS is able to find higher response values.

Looking at these results, we have decided to use MACD with the more

powerful version of the MMAS tested.

In the following pages we show the results of MACD and Näıve Ant

Colony Optimization compared withMMAS and SA-MMAS. Also in this

case, we test the performance of the methods on the three benchmark func-

tions. We apply the Kruskal-Wallis test [16] with an α = 0.05 and, looking

at the resulting p-values for each analysis, we refuse the null hypothesis.

The behaviour of the responses is significantly different between the different
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Development of the Max Score Value over Run Length

Number of Function Evaluations
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Figure 5.9: Performance comparison between the Model Based Ant Colony De-
sign, the Näıve Ant Colony Optimization, the MMAS and the SA-MMAS .
The candidate solutions are evaluated with the Polynomial Regression Model. (a)
shows the development of the average max score value (calculated on 100 simu-
lations) over run length and (b) Distribution (based on 100 simulations) through
boxplot representation.

methods.

The algorithms are run for at most 1000 function evaluations, for the

Polynomial Regression Model (PRM) and the Polynomial Sparse Regression

Model (PSRM). In the case of Discrete Rosenbrock Function, we decide to

allow the algorithms to run for 5000 function evaluations for the non linear

nature of the function.

We apply a non parametric statistical hypothesis test for assessing whether

two independent samples of observations have equally large values, namely

Mann-Whitney U test [16] (also called the Mann-Whitney-Wilcoxon or Wilcoxon

rank-sum test). Also in this case, we compare the difference of the max val-

ues reached by the different approaches. More precisely, the null hypothesis

is that the distributions of both samples are equal and the alternative hy-

pothesis is that there is a location shift in one sample, then we can interpret

a significant Mann-Whitney-Wilcoxon test as showing a significant difference

in medians. In Table 5.6, the p-value for each test is shown. We select an
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α = 0.05. We conclude that MACD and NACO obtain better results with

respect to MMAS but they do not have a significant difference in median

with respect to SA-MMAS.

X Y p− value
MACD SA-MMAS 0.09578
MACD MMAS 0.03795
NACO SA-MMAS 0.13854
NACO MMAS 0.02365

Table 5.6: Mann-Whitney U test. Alternative Hypothesis: X has a significant
difference in median with respect to Y . α = 0.05

Anyway, in Fig. 5.9 we can see that at 500 function evaluations the

performance of the SA-MMAS and MACD are almost the same. From

the 500−th evaluation, it is likely that MACD finds better solutions with

respect to the other algorithms. NACO is not performing well with respect

to SA-MMAS and MACD but it is competitive withMMAS. Anyway it is

showing satisfactory results. In the first function evaluations our approaches

are not able to reach good results due to the limited amount of data available

for the learning phase of the predictive model and the clustering part of the

NACO. After 400 function evaluations the predictive model starts to be more

reliable, NACO needs more data to extract sufficient information to boost

the performance of the algorithm.

In Fig. 5.9 (b) the range of the Max Score Distribution of the MACD

is higher with respect to SA-MMAS. We presume that it is due to the im-

provement of the score that, at each step, it is higher thanks to the Simulative

Model Based Phase (see Fig. 5.2). NACO got a smaller range of the score.

With the Polynomial Sparse Regression Model (PSRM) the performance

of MACD is more evident. NACO is showing a better behaviour in this

case with respect to the previous one. In Fig. 5.10, MACD has a better

chance of finding the a good solutions from the 500−th evaluations onward.

In this case too, the first function evaluations are important for the learning

phase of the predictive model. In NACO the response value is constantly

increasing iteration by iteration reaching the same results obtained by the
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Figure 5.10: Performance comparison between the Model Based Ant Colony De-
sign and theMMAS and the SA-MMAS . The candidate solutions are evaluated
with the Polynomial Sparse Regression Model. (a) shows the development of the
average max score value (calculated on 100 simulations) over run length and (b)
Distribution (based on 100 simulations) through boxplot representation.

SA-MMAS. From these preliminary results, MACD seems to be the most

promising approach. In fact, in Fig. 5.11 is shown that MACD is able to

reach the optimum of the PSRM after only 200 function evaluations.

Also with the PSRM, we apply the Mann-Whitney U test. In Table 5.7,

the p-values are shown. MACD has a significant difference in median with

respect to MMAS and SA-MMAS.

X Y p− value
MACD SA-MMAS 0.05367
MACD MMAS 0.00354
NACO SA-MMAS 0.09978
NACO MMAS 0.00261

Table 5.7: Mann-Whitney U test. Alternative Hypothesis: X has a significant
difference in median with respect to Y . α = 0.05

In the case of Discrete Rosenbrock Function the behaviour of MACD

and NACO is different with respect to the previous two function. In Fig.
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Figure 5.11: Max Score Distribution (based on 100 simulations) of the Model
Based Ant Colony Design among the 1000 function evaluations. The candidate
solutions are evaluated with the Polynomial Sparse Regression Model.

5.12 the best algorithm is the hybrid version of MMAS coupled with the

Simulated Annealing. Anyway, NACO reaches satisfactory results and it has

better performance with respect to the standard version ofMMAS and, on

average, it is able to minimize the function decreasing the response value until

a good approximation of the minimum. MACD shows good performance but

it has some limitations to reach good results due to the non linearity of the

considered function. In fact, the predictive model used in the Simulative

Phase of the algorithm is a linear one so it is not able to recognize correctly

the possible relations between variables.

Applying the Mann-Whitney U test, we can say that MACD, NACO and

theMMAS have comparable performance and they do not show significant

different in median.

The analysis of the performance of the Model Based Ant Colony Design

and the Näıve Ant Colony Optimization demonstrates that our approaches

are able to reach good solutions in few iterations in the three case studies,

overall in the case of MACD. The presence of the predictive model and a

further investigation of the surface, obtained from the model, using Simulat-

ing Annealing help MACD to reach good results. In fact, MACD is able to

perform better in the two first case studies, NACO reaches better results in
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Figure 5.12: Performance comparison between the Model Based Ant Colony De-
sign, the Näıve Ant Colony Optimization, theMMAS and the SA-MMAS . The
candidate solutions are evaluated with the Descrete Rosenbrock Function. (a)
shows the development of the average max score value (calculated on 100 simu-
lations) over run length and (b) Distribution (based on 100 simulations) through
boxplot representation.
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the last case (in terms of minimum value reached). NACO is suffering the

absence of heuristic information and, during the experimentation, it will be

able to reach better results. In the case of MACD, the nature of the predic-

tive model used in the Simulative Phase, limits the ability of the approach

to optimize the Discrete Rosenbrock Function. SA-MMAS seems to be a

good compromise in all the functions but this optimization algorithm is not

usable in the real experimentation due to the presence of a local search. In

fact, the real experimentation is based on a parallel evaluation of 96 enzymes

and It is not allow to test an enzyme at each step. These two features of

the experimentation do not permit to use a local search approach that it is

based on a single-point search.

The experimentation will test the ability of the two approaches in a real

contest and to understand if they are good solutions in the case of complex

function. In the next chapter, we will present the results obtained with the

two methods on the motivating problem and we will analyze the time elapsed

to generate a new set of candidate solutions for the MACD and NACO.



Chapter 6

Results

6.1 Introduction

In this thesis, we have proposed and investigated the performance of new

methods to tackle complex problems. We now apply our proposed solutions

to the problem of Enzyme Engineering Design.

In this context, we develop a novel biological approach to create enzymes,

whose main function is to promote chemical reactions (see Chapter 1).

During the experimentation, the number of enzymes that can be tested

each time is 96. This number is chosen in accordance with the dimension of

the well-plate. According to the biologists, the procedure can be competitive

with classical biological techniques if and only if it is able to find the optimal

or a good enzyme in, at most, 5 generations. In this chapter, we present the

results obtained in these 5 generations.

The initial set of enzymes are randomly chosen in the experimental space.

Randomness (instead of prior knowledge) allows the exploration of the space

in areas not anticipated by prior knowledge but where interesting new effects

may possibly reside. This initial design, or the first generation of experimen-

tation, has been conducted and responses observed. All the approaches start

from this initial set of data.

The first part of this chapter is dedicated to a preliminary analysis of the

starting set of enzymes, then we present the results obtained by Model Based
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Ant Colony Design and Näıve Bayes Ant Colony Optimization.

6.2 Preliminary Analysis

We now show the results obtained from the first generation of enzymes.

In Fig. 6.1, we can see the distribution of the score. The main descriptive

statistics are summerized in Table 6.1.

Score Distribution
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Figure 6.1: Score Distributions for Generations 1.

Gen. Min. 1st Qu. Median Mean 3rd Qu. Max St. Dev.
1 242.0 322.2 375.0 381.4 433.5 696.0 26.9

Table 6.1: Descriptive Statistics of Generation 1

In general, the values reached by the score are not really high and, in Fig.

6.1, we can see an asymmetrical distribution around the mean value except
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for an outlier, the enzyme composed by pseudo-domains (79, 29, 2, 22) with

a score of 696. However not all pseudo-domains were tested. In fact, pseudo-

domains number 19, 22, 23, 26 and 51 do not appear in any position in any

sequence. This could be a problem in the next step of the approaches. The

proposed method must be able to move in the search space including areas

where there is no information whatsoever.

We know that we are interested in maximizing the response, so we can find

some pseudo-domains in each position of the enzymes, which are present in

experimental trials with high system response values. In fact, we can identify

some pseudo-domains in each position that can be part of candidate enzymes

that are more likely to yield higher response.

In Figure 6.2, as an example, we present the pseudo-domains in position

1. The analysis can be extended to all the other positions. The pseudo-

domains that appeared in experiments whose response values exceed the

3rd quantile threshold are marked by a green vertical column and they are

shown in the left part of the plot. In the right part, we can see the pseudo-

domains appearing in experiments whose response values did not exceed the

1st quantile threshold. We can immediately highlight that some of them are

present only in experiments with higher response values (e.g pseudo-domains

labelled as 24, 39, 88) and others appear both in high values and in low values

of the response (e.g pseudo-domains labelled as 8, 75).

Accordingly, with the information derived by this preliminary analysis

it is reasonable that single pseudo-domains cannot be sufficient to account

for a higher response value of the system. Only when these pseudo-domains

interact with other pseudo-domains in different positions it is possible to

achieve much higher response values.

Figure 6.3 shows the interaction between pseudo-domains in the first and

second position of the enzymes. The green bar is associated to interactions

between pseudo-domains, which lead to higher values of the response (over

the 3rd quartile of the distribution of the response).

We can observe that some pseudo-domains in position 1 (e.g 8 and 80)

interacting with different pseudo-domains in position 2 generate opposite

results; this implies that some pseudo-domains are not important by them-
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Figure 6.2: Presence of domains in position 1 in the lowest and highest experi-
ments of the first generation of points.

selves, but they need to interact with other pseudo-domains to form an en-

zyme building block with higher probability to be good.

These results are a good starting point for our approaches and allow us to

extract some information from the data and to confirm considerations done

by the biologists at the begining of the experiments.
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Figure 6.3: Interaction between pseudo-domains in position 1 and in position 2
at the first generation: the green bar represents high values of the response.

6.3 Model Based Ant Colony Design: Imple-

mentation and Results

The Model Based Ant Colony Design (MACD) is characterized by two

different phases, as shown in Figure 5.2 in Chapter 5:

– Simulative Model Based Phase (S-MB phase): this phase is responsible for

the search procedure of the approach. The predictive model simulates

the response allowing the algorithm to move in the complex space for

selecting the next set of proteins;

– Learning and Experimental Phase (L-E phase): during this part of the
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approach, the candidate enzymes, selected by the S-MB phase, are

tested and added to a dataset containing all the evaluated enzymes.

Generation by generation new candidate enzymes extend the dataset

permitting a refinement of the predictive model. The evaluation of the

points is done as explained in Chapter 1.

These two phases have different settings for the parameters of the algo-

rithm. In S-MB phase the parameters are chosen following the considerations

obtained during the simulative case study. In the L-E phase, the parameters

depend on the real experimentation so we have to consider the limits imposed

by biologists. See Table 6.2.

S-MB Phase
N Gen. ρ Heuristic Local Seach Pred. Model

SA-MMAS 96 100 0.80 No SA Yes

N Gen.
L-E Phase 96 5

Table 6.2: Paramenter Setting of the Model Based Ant Colony Design. L-E Phase
is to the real experimentation.

Steps Iteration p0 α
SA 2 190 0.80 0.95

Table 6.3: Paramenter Setting of Simulating Annealing (SA).

Considering the small number of generations that can be evaluated during

the experimentation and the need to explore the search space as much as

possible, we decide to implement the following rule in the algorithm:

– at step i the best solution is compared with the best solution at step i−1.

If the best solution at step i − 1 is not incremented by at least 4%

then all the probabilities, pij, with which an ant chooses to go from one

pseudo-domain to another, are set to be equal (uniform distribution).

This rule is applied starting from i = 3.
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This rule enables the approach not to stop too early in a specific area of

the experimental space.

In Table 6.4 some descriptive statistics of the 5 generations of enzymes

are shown. In generation 1, the best reached value is equal to 696.0 and the

average is 381.4. Generation by generation, MACD was able to increase the

value of the best enzyme by 8% and the average value by more than 50%.

The worst generation is number 4 due to the choice of making it independent

of previously acquired information. In fact, the best value of generation 2 is

not incremented by at least 4% in generation 3.

Gen. Min. 1st Qu. Median Mean 3rd Qu. Max St. Dev.
1 242.0 322.2 375.0 381.4 433.5 696.0 26.9
2 410.0 505.5 554.5 546.7 594.0 724.0 68.3
3 444.0 546.0 575.5 575.9 603.8 745.0 49.2
4 256.0 386.8 447.5 446.1 511.2 647.0 85.4
5 539.0 565.5 589.5 599.1 625.0 756.0 44.4

Table 6.4: Main descriptive statistics for all the 5 generations.

In Figure 6.4, the trend in the 5 generations is more evident. Step by

step the distribution of the response is moving to higher values. In fact the

minimum value of generation 5 is 539.0, which is higher than all the minimum

values of the generations. It means that MACD is moving to a part of the

search space where the responses are higher.

To understand if the approach is in a plateau or if it is moving to a good

region of the search space, we decided to do a new generation of enzymes.

The descriptive statistics are summarized in Table 6.5. Fig. 6.5 shows the

distribution of the generation.

Gen. Min. 1st Qu. Median Mean 3rd Qu. Max St. Dev.
6 537.0 579.5 604.0 616.1 635.5 834.0 52.8

Table 6.5: Descriptive Statistics for Generation 6.

As we can see, in the last generations, MACD was able to find a higher

score with respect to the other previous generations. With this application
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Figure 6.4: Score Distributions for Generations number 2 (a), 3 (b), 4 (c) and 5
(d).



MODEL BASED ANT COLONY DESIGN: IMPLEMENTATION AND RESULTS 123

Score Distribution Generation 6

Score

D
en
si
ty

300 400 500 600 700 800

0.
00
0

0.
00
4

0.
00
8

0.
01
2

1st qt 3rd qt

Figure 6.5: Score Distributions for Generation 6.

we want to investigate if the method is able to move towards good regions

of the search space starting from a set of randomly chosen enzymes. We

apply the Mann-Whitney U test [16], where the null hypothesis is that the

distributions of both samples are equal and the alternative hypothesis is that

there is a location shift in one sample, it means that the two samples show a

significant difference in medians. We apply the non parametric test between

generation 6 and generation 1 to understand if MACD is able to increase the

score values from the first generation to the last one. The resulting p-value

is equal to 2.2× 10−16 then we refuse the null hypothesis and we accept the

alternative one. The two generations show a significant difference in medians.

In Fig. 6.6, it is evident that the median of generation 6 is higher with respect

to generation 1.

In the last generation the best reached enzyme Score was equal to 834.

We can observe that the average of the generation is not increased much with

respect to the previous one. This is because it is not stuck in a region with

high Score but is able to explore the search space.
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Figure 6.6: Score Distributions for 6 Generations.

In this problem, we do not know the maximum of the unknown function

so we cannot say if the solution found by MACD is the optimum or a good

approximation, but the approach is able to move in the search space from a

“bad” region to a new one with higher values.

We highlight that MACD takes 40 minutes to produce a new set of en-

zymes to be tested. In this context it is a reasonable time.

6.4 Näıve Bayes Ant Colony Optimization:

Implementation and Results

As described in Chapter 5, Näıve Bayes Ant Colony Optimization (NACO)

is an optimization algorithm based on the combination between Ant Colony

Optimization and Näıve Bayes Classifier. The main aim of this approach is

to extract the relevant information from the available set of evaluated en-

zymes using the Näıve Bayes Approach and to explore the search space by

the ACO algorithm. In this case, NACO is using the similarity matrix as

described in Chapter 5, more precisely in Fig. 5.3. The parameter settings

of NACO are shown in Table 6.7.



NAÏVE BAYES ANT COLONY OPTIMIZATION: IMPLEMENTATION AND RESULTS 125

N Gen. ρ α β δ threshold γ ∈ R
NACO 96 5 0.80 1 1 2 80%

Table 6.6: Paramenter Setting of the Näıve Bayes Ant Colony Optimization. N
is the population size, Gen. the number of generations, ρ the evaporation factor.
α is the weight for the heuristic information. β is the weight for the pheromone. δ
controls the weight of Näıve Information and γ is considered by the Näıve Bayes
Classifier.

In Table 6.4, some descriptive statistics of the first 4 generations of en-

zymes are shown. Also with this approach we start from the 96 randomly

chosen enzymes presented in Section 6.2. In the second generation, NACO

was able to move to a better region of the search space increasing the aver-

age value by more the 58%. Moreover the increment of the best value from

generation 1 to generation 2 is around 15%. Generation 3 confirms the trend

of the best value; in fact, NACO was able to reach the Score 830.0 with

less than 288 experimental points. Despite the fact that the best value has

increased, the average of the generation is decreasing from 568.8 to 534.2.

This behaviour is more evident in Figure 6.7, the distribution of the third

generation has moved to the left hand side of the plot. In generation 4, the

variability of the distribution is wider but the maximum value is still increas-

ing. In the last generation, NACO is not able to increase the value of the

best enzyme .The best enzyme reaches Score 845.0.

Gen. Min. 1st Qu. Median Mean 3rd Qu. Max St. Dev.
1 242.0 322.2 375.0 381.4 433.5 696.0 26.9
2 306.0 568.8 601.5 602.7 647.2 792.0 73.8
3 436.0 534.2 589.0 598.3 650.2 830.0 85.8
4 241.0 476.5 579.4 579.4 712.8 845.0 140.3
5 402.0 509.5 582.0 602.4 751.2 841.0 127.6

Table 6.7: Main descriptive statistics for the 5 generations.

From these generations we notice that NACO is reaching, step by step,

better values of the maximum and is exploring the search space in a satis-

factory way. Despite that the value of 1st quartile and the average values are
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Figure 6.7: Score Distributions for Generations number 2 (a), 3 (b), 4 (c) and 5
(d).
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decreasing generation by generation, the value of the best enzyme and the

3rd quartile are increasing. This behaviour is more evident in generation 4,

where the minimum is dwindling. In Fig. 6.8, it is clear that the variabil-

ity is increasing generation by generation. The information extracted from

the Näıve Bayes Classifier and the similarity matrix allows the algorithm to

explore more the search space also in regions where the score is low.

Also in this case, we apply the Mann-Whitney U test to understand if

there is a real location shift between the last generation and the first one.

The p-value is equal to 2.2×10−16. We conclude that NACO is able to move

towards good regions of the search space.

Table 6.8 shows the evolution of the best enzyme.

Score Distributions of the 5 Generations

Generations

S
co
re

average

841845830

792

696

402

241

436

306

242

Gen1 Gen2 Gen3 Gen4 Gen5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

Figure 6.8: Score Distributions for 5 Generations.

Pos1 Pos2 Pos3 Pos4 Score
Enzyme Gen1 79 29 2 22 696.0
Enzyme Gen2 79 29 13 84 792.0
Enzyme Gen3 24 29 75 84 830.0
Enzyme Gen4 24 22 75 84 845.0
Enzyme Gen5 24 22 3 84 841.0

Table 6.8: Evolution of the best enzyme generation by generation.
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It is important to stress that NACO takes less than 10 minutes to produce

a new set of enzymes to be tested.



Chapter 7

Conclusions

The motivating problem of this thesis concerns Enzyme Engineering De-

sign and the principal aim is to develop a procedure for the exploration of

a sequence space to identify the best enzyme with a biological functionality.

The main problem in this field is the very large experimental space to be

searched for the optimization. In our ongoing case study, the experimental

space is discrete, contains more the 8.1 × 107 possible enzymes to be tested

and we do not have any “a priori” information on the problem.

In this thesis, we have explored the possibility of tackling this problem

combining bio-inspired algorithms with advanced statistical techniques. To

this effect, we have developed two approaches which merged some of the

stronger features of traditional approaches:

– Model Based Ant Colony Design (MACD);

– Näıve Bayes Ant Colony Optimization (NACO).

Both the proposed approaches represent an interactive process where the

dialogue between design and laboratory experimentation at each generation

creates a path in the combinatorial search space that may lead toward a

region of optimality. Generation after generation, the evolving design re-

quires a small number of experimental points to test, and consequently a

small investment in terms of resources. The small number of tests make each
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experimental phase really fast and it is always possible to monitor how much

improvement there is from one generation to the next.

Moreover, an advantage of Näıve Bayes Ant Colony Optimization is that

it is not computational intensive, in fact it takes less than 10 minutes to

generate a new population of candidate enzymes. This advantage allows the

researcher to be fast in creation and analysis of possible candidate enzymes.

Furthermore MACD and NACO treat the relevant information contained

in each generation in a different way with respect to classical optimization al-

gorithms. The special role played by some factors and some particular levels,

or the effect of different order factor interactions are not ignored, but identi-

fied and used to construct the next generation design. The predictive model

and the Näıve Bayes Classifier have demonstrated to be good at extracting

this information from data. These two techniques can in fact uncover the

main relevant factors, detect and weight the main interactions. Therefore

the predictive model and the Näıve Bayes Classifier can supplement the Ant

Colony Optimization approach discovering and communicating information

between successive populations of experiments.

MACD and NACO have shown the ability to treat with complex problems

characterized by a large experimental space defined by a large number of

parameters and their possible levels. Anyway the two approaches can be

used in different situations. In fact, in presence of a priori information on

the problem, NACO can be chosen as the solution. Moreover NACO takes

few minutes to produce a new set of candidate solutions to be tested therefore

it is a powerful method when the time is an important constraint. MACD

can be chosen in absence of information on the problem. The predictive

model has demonstrated to be a good way to simulate the response surface

and it can make predictions about unexplored regions of the search space.

In this way, the experimenter can do hypotheses about regions that he is not

going to test in the experimentation.

In the physical experimentation MACD and NACO have demonstrated

their ability to identify new enzymes in a large search space of competi-

tive candidates and have shown a remarkable shift of the initial population

towards higher response values areas of the search space.
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In fact, the best sequence from each generation has been aligned against

NCBI non-redundant protein database using BLASTp local alignment soft-

ware to assess any possible sequence similarity to natural sequences at the

level of primary structure. The BLAST analysis did not reveal any signif-

icant sequence similarity even when using permissive parameters. Most of

the hits retrieved showed limited similarity on short amino-acid stretches and

none of the hits belong to the enzymatic family of the target enzyme (i.e.

C.fusarum serine esterase). These results suggest that the algorithms have

explored a region of the sequence space not sampled by Natural evolution,

thus identifying artificial sequences deprived of any a priori information that

fold into tertiary structure closely related to the target one. Within this

framework the algorithms have successfully met the biological requirement

of this project as outlined in Chapter 1.

Despite the overall structural similarity, top scoring sequences lack the

beta-sheets core of the target enzyme which prevent selected sequences to be

used as template without further refinements. The impossibility to achieve

the desired target structure may be due to different factors. First, the al-

gorithms might need more iterations to achieve the global optima. Second,

the global optima might not be reachable due the finite number of domain

used. Indeed, the sequence space related to a 200 amino-acids long protein

counts 20200 different enzyme sequences. In this work we employed only 95

domains of 50 amino acids long yielding a sequence space of 954, which rep-

resent only a minor fraction of the original one and might not contain the

optimal solution.

Finally, a number of open problems must be solved to allow the devel-

opment of new methods that combine advanced statistical techniques and

optimization algorithms. These problems suggest a variety of research direc-

tions. One such direction would be to investigate the possibility to allow an

automatic learning of the structure of the predictive model. In MACD, the

current framework requires an initial model and it allows to adapt the model

to the data at each step. It would be preferable an automatic selection of

statistical models. In fact, since the number of variables and their interac-

tions is large, typically there are multiple candidate models yielding similar
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predictive accuracy. Another direction would be to investigate the possibility

to find alternative approaches to extract hidden information from the data.

In NACO, we use a Näıve Bayes Classifier to understand which elements

mostly influence the score. It would be interesting to study different class

of information measures able to detect the relations between elements and

to guide the search phase of the optimization algorithms towards regions of

optimality.

In terms of applications of MACD and NACO, the attention should be

paid in the evaluation of generations needed to reach a satisfactory solu-

tion. Furthermore, it would be interesting to widen the performance studies

to more complicated benchmark functions, and subsequently to study the

methods generalization properties in different application fields.
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