137 research outputs found

    Analyse de la valeur économique d’un système de prévision probabiliste des inondations : cas de la rivière Montmorency

    Get PDF
    Prévoir et se préparer aux inondations représente un enjeu majeur au Québec. Pour y parvenir, la Direction de l’Expertise Hydrique du Québec fait équipe avec les municipalités de la province afin de détecter les risques de cet aléa aussi tôt et fidèlement que possible et d’engager des mesures d’urgences. Cependant, il existe une multitude de méthodes permettant de modéliser le comportement futur d’un cours d’eau et de transmettre l’incertitude sur cette prévision aux autorités concernées. L’objectif de ce projet de maitrise se divise en deux parties. Premièrement, de comparer différentes approches de modélisation hydrologique en faisant varier l’intrant météorologique et en tenant compte de l’incertitude sur l’état de départ d’un bassin versant. Deuxièmement, de construire une plateforme de comparaison des performances basée sur l’analyse de la valeur économique de chaque système dans un contexte de prévention et de préparation aux inondations. Le projet compare trois systèmes de prévisions hydrologiques probabilistes sur la rivière Montmorency (incluant une reproduction du système en place), pour la période 2011-2014. Chaque système passe ensuite par un décideur artificiel devant engager des dépenses préventives dans le but de réduire les dégâts potentiels (matériels et psychologiques) des inondations futures. La valeur de chaque système est comparée en tenant compte du niveau d’aversion au risque de l‘utilisateur et de la valeur accordée aux dommages intangibles des inondations. Ce mémoire conclue en cernant les critères de conception d’un système de prévision ayant le plus gros impact sur la valeur opérationnelle du système, permettant d’aller au-delà des outils de mesure de performance statistique conventionnels (CRPS, fiabilité, LOG score). Enfin, il souligne des pistes de projets futurs s’appuyant sur les conclusions tirées

    Moving beyond the cost–loss ratio : economic assessment of streamflow forecasts for a risk-averse decision maker

    Get PDF
    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost–loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts’ uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts’ quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid overforecasting could help improve both the quality and the value of forecasts

    Teaching for the transition: The Canadian PGY-1 neurosurgery \u27rookie camp\u27

    Get PDF
    Background: Transitioning from medical school to residency is difficult and stressful, necessitating innovation in easing this transition. In response, a Canadian neurosurgical Rookie Camp was designed and implemented to foster acquisition of technical, cognitive and behavioral skills among incoming Canadian post graduate year one (PGY-1) neurosurgery residents. Methods: The inaugural Rookie Camp was held in July 2012 in Halifax. The curriculum was developed based on a national needs-assessment and consisted of a pre-course manual, 7 case-based stations, 4 procedural skills stations and 2 group discussions. The content was clinically focused, used a variety of teaching methods, and addressed multiple CanMEDS competencies. Evaluation included participant and faculty surveys and a pre-course, post-course, and 3-month retention knowledge test. Results: 17 of 23 PGY-1 Canadian neurosurgical residents participated in the Camp. All agreed the course content was relevant for PGY-1 training and the experience prepared them for residency. All participants would recommend the course to future neurosurgical residents. A statistically significant improvement was observed in knowledge related to course content (F(2,32) = 7.572, p\u3c0.002). There were no significant differences between post-test and retention-test scores at three months. Conclusion: The inaugural Canadian Neurosurgery Rookie Camp for PGY-1 residents was successfully delivered, with engagement from participants, training programs, the Canadian Neurosurgical Society, and the Royal College. In addition to providing fundamental knowledge, which was shown to be retained, the course eased junior residents\u27 transition to residency by fostering camaraderie and socialization within the specialty

    A review of the polygraph: history, methodology and current status

    Get PDF
    The history of research into psychophysiological measurements as an aid to detecting lying, widely known as the ‘lie detector’ or polygraph is the focus of this review. The physiological measurements used are detailed and the debates that exist in regards to its role in the investigative process are introduced. Attention is given to the main polygraph testing methods, namely the Comparative Question Test and the Concealed Information Test. Discussion of these two central methods, their uses and problems forms the basis of the review. Recommendations for future research are made specifically in regards to improving current polygraph technology and exploring the role of the polygraph in combination with other deception detection techniques

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Evaluation of operational ocean forecasting systems from the perspective of the users and the experts

    Get PDF
    The Intergovernmental Oceanographic Commission (IOC) has an Ocean Decade Implementation Plan (UNESCO-IOC, 2021) that states seven outcomes required for the ocean we want, with the fourth outcome being “A predicted ocean where society understands and can respond to changing ocean conditions.” To facilitate the achievement of this goal, the IOC has endorsed Mercator Ocean International to implement the Decade Collaborative Center (DCC) for OceanPrediction (https://www.mercator-ocean.eu/oceanprediction/, last access: 21 August 2023), which is a cross-cutting structure that will work to develop global-scale collaboration between Decade Actions related to ocean prediction
    corecore