10 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The potential for transmission of BCG from orally vaccinated white-tailed deer (Odocoileus virginianus) to cattle (Bos taurus) through a contaminated environment: experimental findings.

    Get PDF
    White-tailed deer (Odocoileus virginianus) experimentally infected with a virulent strain of Mycobacterium bovis have been shown to transmit the bacterium to other deer and cattle (Bos taurus) by sharing of pen waste and feed. The risk of transmission of M. bovis bacille Calmette-Guerin (BCG) vaccine from orally vaccinated white-tailed deer to other deer and cattle, however, is not well understood. In order to evaluate this risk, we orally vaccinated 14 white-tailed deer with 1×10(9) colony forming units BCG in lipid-formulated baits and housed them with nine non-vaccinated deer. Each day we exposed the same seven naïve cattle to pen space utilized by the deer to look for transmission between the two species. Before vaccination and every 60 days until the end of the study, we performed tuberculin skin testing on deer and cattle, as well as interferon-gamma testing in cattle, to detect cellular immune response to BCG exposure. At approximately 27 weeks all cattle and deer were euthanized and necropsied. None of the cattle converted on either caudal fold, comparative cervical tests, or interferon-gamma assay. None of the cattle were culture positive for BCG. Although there was immunological evidence that BCG transmission occurred from deer to deer, we were unable to detect immunological or microbiological evidence of transmission to cattle. This study suggests that the risk is likely to be low that BCG-vaccinated white-tailed deer would cause domestic cattle to react to the tuberculin skin test or interferon-gamma test through exposure to a BCG-contaminated environment

    Determining the persistence of Mycobacterium bovis bacille Calmette-Guerin Danish in select tissues of orally vaccinated feral swine (Sus scrofa ssp.)

    No full text
    Mycobacterium bovis bacille Calmette–Guerin (BCG) is being considered for vaccination of feral swine (Sus scrofa ssp.). Since BCG is a live bacterium, evaluation of its safety and persistence in tissues is important. Fifteen feral swine received approximately 4.5 × 106 colony forming units of BCG Danish via oral bait. Four animals received bait without BCG. At 1, 3, 6, and 9 months post-vaccination, four vaccinates were euthanized. Non-vaccinates were euthanized at 9 months. Clinical signs were not noted in vaccinated pigs at any time. Tissues from all 20 pigs were culture-negative for mycobacteria. Based on our data, BCG is safe and appears not to persist in feral swine tissues after one month post-oral vaccination. However, further work must be performed at higher doses, and on a larger number of animals representing the target population, and further evaluation of persistence in tissues within the first month post-vaccination is needed.This work was funded by USDA APHIS Veterinary Services and SaBio-IREC (Cuenta con Personal Perteneciente—Universidad de Castilla la Mancha—La Junta de Comunidades de Castilla La Mancha) is a contribution to Plan Nacional I + D + i research grant AGL2011-30,041 from MINECO and the EU FP7 grant WildTBVac.Peer Reviewe

    Immunization with a Synthetic Peptide Vaccine Fails to Protect Mule Deer (\u3ci\u3eOdocoileus hemionus\u3c/i\u3e) from Chronic Wasting Disease

    Get PDF
    Chronic wasting disease (CWD) adversely affects both wild and captive cervid populations. A vaccine to prevent CWD would be a highly desirable tool to aid in disease management. To this end, we tested in mule deer a combination of CWD vaccines consisting of cervid prion peptide sequences 168-VDQYNNQNTFVHDC-182 and 145- NDYEDRYYRENMYRYPNQ-164 that had previously been shown to delay onset of clinical disease and increase survival in a mouse-adapted scrapie model. Thirteen captive mule deer (Odocoileus hemionus) were divided into vaccine (n=7) and control groups (n=6), and given prime and boost vaccinations intramuscularly 5 wk apart. Eight weeks postprime (3 wk postboost), all animals were challenged via natural exposure to an environment contaminated with infective CWD prions. Deer were monitored intermittently for prion infection by rectal and tonsil biopsies beginning 275 days postchallenge. All vaccinates responded to both peptide conjugates present in the combination vaccine as measured by enzyme-linked immunosorbent assay. However, all deer eventually became infected regardless of vaccine status

    Numbers of CCT reactor white-tailed deer at four time points.

    No full text
    <p>Numbers of vaccinated and non-vaccinated white-tailed deer of total tested that were comparative cervical skin test reactors as measured at four time points.</p
    corecore